Sequential Monte Carlo Methods for DSGE Models

Ed Herbst* Frank Schorfheide+

*Federal Reserve Board

+University of Pennsylvania, PIER, CEPR, and NBER

June 12, 2017

1The views expressed in this presentation are those of the presenters and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System.
These lectures use material from our joint work:

Some Background

- **DSGE model**: dynamic model of the macroeconomy, indexed by θ – vector of preference and technology parameters. Used for forecasting, policy experiments, interpreting past events.

- Bayesian analysis of DSGE models:

 $$p(\theta|Y) = \frac{p(Y|\theta)p(\theta)}{p(Y)} \propto p(Y|\theta)p(\theta).$$

- **Computational hurdles**: numerical solution of model leads to state-space representation \Rightarrow likelihood approximation \Rightarrow posterior sampler.

- “Standard” approach for (linearized) models (Schorfheide, 2000; Otrok, 2001):
 - Model solution: log-linearize and use linear rational expectations system solver.
 - Evaluation of $p(Y|\theta)$: Kalman filter
 - Posterior draws θ^i: MCMC
SMC can help to

Lecture 1

Lecture 2

- or both: SMC^2: Chopin, Jacob, and Papaspiliopoulos (2012) ... Herbst and Schorfheide (2015)
Lecture 1
Sampling from Posterior

- DSGE model posteriors are often non-elliptical, e.g., multimodal posteriors may arise because it is difficult to
 - disentangle internal and external propagation mechanisms;
 - disentangle the relative importance of shocks.

- Economic Example: is wage growth persistent because
 1. wage setters find it very costly to adjust wages?
 2. exogenous shocks affect the substitutability of labor inputs and hence markups?
Sampling from Posterior

- If posterior distributions are irregular, **standard MCMC methods can be inaccurate** (examples will follow).

- **SMC samplers often generate more precise approximations** of posteriors in the same amount of time.

- SMC can be parallelized.

- **SMC = importance sampling on steroids** \implies We will first review importance sampling.
Importance Sampling

- Approximate $\pi(\cdot)$ by using a different, tractable density $g(\theta)$ that is easy to sample from.

- For more general problems, posterior density may be unnormalized. So we write

$$
\pi(\theta) = \frac{p(Y|\theta)p(\theta)}{p(Y)} = \frac{f(\theta)}{\int f(\theta) d\theta}.
$$

- Importance sampling is based on the identity

$$
E_\pi[h(\theta)] = \int h(\theta)\pi(\theta) d\theta = \frac{\int_\Theta h(\theta) \frac{f(\theta)}{g(\theta)} g(\theta) d\theta}{\int_\Theta \frac{f(\theta)}{g(\theta)} g(\theta) d\theta}.
$$

- (Unnormalized) importance weight:

$$
w(\theta) = \frac{f(\theta)}{g(\theta)}.
$$
Importance Sampling

1. For \(i = 1 \) to \(N \), draw \(\theta^i \overset{iid}{\sim} g(\theta) \) and compute the unnormalized importance weights

\[
w^i = w(\theta^i) = \frac{f(\theta^i)}{g(\theta^i)}.
\]

2. Compute the normalized importance weights

\[
W^i = \frac{w^i}{\frac{1}{N} \sum_{i=1}^{N} w^i}.
\]

An approximation of \(\mathbb{E}_\pi[h(\theta)] \) is given by

\[
\bar{h}_N = \frac{1}{N} \sum_{i=1}^{N} W^i h(\theta^i).
\]
If θ^i's are draws from $g(\cdot)$ then

$$
\mathbb{E}_\pi[h] \approx \frac{1}{N} \sum_{i=1}^{N} h(\theta^i) w(\theta^i), \quad w(\theta) = \frac{f(\theta)}{g(\theta)}.
$$
Since we are generating iid draws from \(g(\theta) \), it’s fairly straightforward to derive a CLT:

\[
\sqrt{N}(\bar{h}_N - \mathbb{E}_\pi[h]) \implies N(0, \Omega(h)), \quad \text{where} \quad \Omega(h) = \nabla g \left[(\pi/g)(h - \mathbb{E}_\pi[h]) \right].
\]

Using a crude approximation (see, e.g., Liu (2008)), we can factorize \(\Omega(h) \) as follows:

\[
\Omega(h) \approx \nabla_\pi[h] \left(\nabla g \left[\pi/g \right] + 1 \right).
\]

The approximation highlights that the larger the variance of the importance weights, the less accurate the Monte Carlo approximation relative to the accuracy that could be achieved with an iid sample from the posterior.

Users often monitor

\[
ESS = N \frac{\nabla_\pi[h]}{\Omega(h)} \approx \frac{N}{1 + \nabla g \left[\pi/g \right]}.
\]
• In general, it’s hard to construct a good proposal density $g(\theta)$,

• especially if the posterior has several peaks and valleys.

• **Idea - Part 1:** it might be easier to find a proposal density for

$$
\pi_n(\theta) = \frac{[p(Y|\theta)]^{\phi_n} p(\theta)}{\int [p(Y|\theta)]^{\phi_n} p(\theta) d\theta} = \frac{f_n(\theta)}{Z_n}.
$$

at least if ϕ_n is close to zero.

• **Idea - Part 2:** We can try to turn a proposal density for π_n into a proposal density for π_{n+1} and iterate, letting $\phi_n \longrightarrow \phi_N = 1$.
\[\pi_n(\theta) = \frac{[p(Y|\theta)]^{\phi_n} p(\theta)}{\int [p(Y|\theta)]^{\phi_n} p(\theta) d\theta} = \frac{f_n(\theta)}{Z_n}, \quad \phi_n = \left(\frac{n}{N_\phi} \right)^{\lambda} \]
\[\bar{h}_{n,N} = \frac{1}{N} \sum_{i=1}^{N} W_{n}^i h(\theta_n^i) \xrightarrow{a.s.} \mathbb{E}_{\pi_n}[h(\theta_n)]. \]

- \(\pi_n(\theta) \) is represented by a swarm of particles \(\{\theta_n^i, W_n^i\}^N_{i=1} \):

- C is Correction; S is Selection; and M is Mutation.
Initialization. \((\phi_0 = 0) \). Draw the initial particles from the prior: \(\theta_1 \overset{iid}{\sim} p(\theta) \) and \(W_1^i = 1, i = 1, \ldots, N \).

Recursion. For \(n = 1, \ldots, N_\phi \),

Correction. Reweight the particles from stage \(n - 1 \) by defining the incremental weights

\[
\tilde{w}_n^i = \left[p(Y|\theta_{n-1}^i) \right]^{\phi_n - \phi_{n-1}}
\]

and the normalized weights

\[
\tilde{W}_n^i = \frac{\tilde{w}_n^i W_{n-1}^i}{\frac{1}{N} \sum_{i=1}^{N} \tilde{w}_n^i W_{n-1}^i}, \quad i = 1, \ldots, N.
\]

An approximation of \(\mathbb{E}_{\pi_n}[h(\theta)] \) is given by

\[
\tilde{h}_{n,N} = \frac{1}{N} \sum_{i=1}^{N} \tilde{W}_n^i h(\theta_{n-1}^i).
\]

Selection.
Initialization.

Recursion. For $n = 1, \ldots, N_\phi$,

Correction.

Selection. (Optional Resampling) Let $\{\hat{\theta}\}_{i=1}^N$ denote N iid draws from a multinomial distribution characterized by support points and weights $\{\theta_{n-1}^i, \tilde{W}_n^i\}_{i=1}^N$ and set $W_n^i = 1$. An approximation of $\mathbb{E}_{\pi_n}[h(\theta)]$ is given by

$$\hat{h}_{n,N} = \frac{1}{N} \sum_{i=1}^N W_n^i h(\hat{\theta}_n^i). \quad (4)$$

Mutation. Propagate the particles $\{\hat{\theta}_i, W_n^i\}$ via N_{MH} steps of a MH algorithm with transition density $\theta_n^i \sim K_n(\theta_n|\hat{\theta}_n^i; \zeta_n)$ and stationary distribution $\pi_n(\theta)$. An approximation of $\mathbb{E}_{\pi_n}[h(\theta)]$ is given by

$$\bar{h}_{n,N} = \frac{1}{N} \sum_{i=1}^N h(\theta_n^i) W_n^i. \quad (5)$$
• **Correction Step:**
 - reweight particles from iteration $n - 1$ to create importance sampling approximation of $E_{\pi_n}[h(\theta)]$

• **Selection Step: the resampling of the particles**
 - (good) equalizes the particle weights and thereby increases accuracy of subsequent importance sampling approximations;
 - (not good) adds a bit of noise to the MC approximation.

• **Mutation Step: changes particle values**
 - adapts particles to posterior $\pi_n(\theta)$;
 - imagine we don’t do it: then we would be using draws from prior $p(\theta)$ to approximate posterior $\pi(\theta)$, which can’t be good!
More on Transition Kernel in Mutation Step

- **Transition kernel** $K_n(\theta | \hat{\theta}_{n-1}; \zeta_n)$: generated by running M steps of a Metropolis-Hastings algorithm.

- **Lessons from DSGE model MCMC:**
 - blocking of parameters can reduce persistence of Markov chain;
 - mixture proposal density avoids “getting stuck.”

- **Blocking:** Partition the parameter vector θ_n into N_{blocks} equally sized blocks, denoted by $\theta_{n,b}$, $b = 1, \ldots, N_{\text{blocks}}$. (We generate the blocks for $n = 1, \ldots, N_\phi$ randomly prior to running the SMC algorithm.)

- **Example:** random walk proposal density:
 \[
 \vartheta_b | (\theta_{n,b,m-1}^i, \theta_{n,-b,m}^i, \Sigma_n^{*,b}) \sim N\left(\theta_{n,b,m-1}^i, c_n^2 \Sigma_n^{*,b}\right).
 \]
Adaptive Choice of $\zeta_n = (\Sigma^*_n, c_n)$

- **Infeasible adaption:**
 - Let $\Sigma^*_n = V_{\pi_n}[\theta]$.
 - Adjust scaling factor according to

 $$c_n = c_{n-1}f(1 - R_{n-1}(\zeta_{n-1})),$$

 where $R_{n-1}(\cdot)$ is population rejection rate from iteration $n - 1$ and

 $$f(x) = 0.95 + 0.10 \frac{e^{16(x-0.25)}}{1 + e^{16(x-0.25)}}.$$

- **Feasible adaption – use output from stage $n - 1$ to replace ζ_n by $\hat{\zeta}_n$:**
 - Use particle approximations of $E_{\pi_n}[\theta]$ and $V_{\pi_n}[\theta]$ based on $\{\theta_{n-1}^i, \tilde{W}_i\}_{i=1}^N$.
 - Use actual rejection rate from stage $n - 1$ to calculate $\hat{c}_n = \hat{c}_{n-1}f(\hat{R}_{n-1}(\hat{\zeta}_{n-1}))$.

E. Herbst and F. Schorfheide
SMC for DSGE Models
More on Resampling

- So far, we have used *multinomial resampling*. It’s fairly intuitive and it is straightforward to obtain a CLT.

- But: *multinominal resampling is not particularly efficient*.

- The Herbst-Schorfheide book contains a section on alternative resampling schemes (*stratified resampling*, *residual resampling*...)

- These alternative techniques are designed to achieve a variance reduction.

- Most resampling algorithms are not parallelizable because they rely on the normalized particle weights.
We will take a look at the effect of various tuning choices on accuracy:

- Tempering schedule λ: $\lambda = 1$ is linear, $\lambda > 1$ is convex.
- Number of stages N_{ϕ} versus number of particles N.
Notes: The figure depicts hairs of $\text{InEff}_N[\bar{\theta}]$ as function of λ. The inefficiency factors are computed based on $N_{\text{run}} = 50$ runs of the SMC algorithm. Each hair corresponds to a DSGE model parameter.
Number of Stages N_ϕ vs Number of Particles N

Notes: Plot of $\nabla[\bar{\theta}]/\nabla_\pi[\theta]$ for a specific configuration of the SMC algorithm. The inefficiency factors are computed based on $N_{run} = 50$ runs of the SMC algorithm. $N_{blocks} = 1$, $\lambda = 2$, $N_{MH} = 1$.

- $N_\phi = 400, N = 250$
- $N_\phi = 200, N = 500$
- $N_\phi = 100, N = 1000$
- $N_\phi = 50, N = 2000$
- $N_\phi = 25, N = 4000$
A Few Words on Posterior Model Probabilities

- Posterior model probabilities

\[
\pi_{i,T} = \frac{\pi_{i,0} p(Y_{1:T}|M_i)}{\sum_{j=1}^{M} \pi_{j,0} p(Y_{1:T}|M_j)}
\]

where

\[
p(Y_{1:T}|M_i) = \int p(Y_{1:T}|\theta(i), M_i) p(\theta(i)|M_i) d\theta(i)
\]

- For any model:

\[
\ln p(Y_{1:T}|M_i) = \sum_{t=1}^{T} \ln \int p(y_t|\theta(i), Y_{1:t-1}, M_i) p(\theta(i)|Y_{1:t-1}, M_i) d\theta(i)
\]

- Marginal data density \(p(Y_{1:T}|M_i)\) arises as a by-product of SMC.
Marginal Likelihood Approximation

- Recall $\tilde{w}_i^n = [p(Y|\theta_{i-1})]^{\phi_n-\phi_{n-1}}$.

- Then

$$\frac{1}{N} \sum_{i=1}^{N} \tilde{w}_i W_{n-1} \approx \int [p(Y|\theta)]^{\phi_n-\phi_{n-1}} \frac{p_{\phi_{n-1}}(Y|\theta)p(\theta)}{\int p_{\phi_{n-1}}(Y|\theta)p(\theta) d\theta} d\theta$$

$$= \frac{\int p(Y|\theta)\phi_n p(\theta) d\theta}{\int p(Y|\theta)\phi_{n-1} p(\theta) d\theta}$$

- Thus,

$$\prod_{n=1}^{N\phi} \left(\frac{1}{N} \sum_{i=1}^{N} \tilde{w}_i W_{n-1} \right) \approx \int p(Y|\theta) p(\theta) d\theta.$$
SMC Marginal Data Density Estimates

<table>
<thead>
<tr>
<th>N</th>
<th>$N_\phi = 100$</th>
<th>$N_\phi = 400$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Mean}(\ln \hat{p}(Y))$</td>
<td>$\text{SD}(\ln \hat{p}(Y))$</td>
</tr>
<tr>
<td>500</td>
<td>-352.19 (3.18)</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>-349.19 (1.98)</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>-348.57 (1.65)</td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>-347.74 (0.92)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table shows mean and standard deviation of log marginal data density estimates as a function of the number of particles N computed over $N_{\text{run}} = 50$ runs of the SMC sampler with $N_{\text{blocks}} = 4$, $\lambda = 2$, and $N_{MH} = 1$.

- Benchmark macro model, has been estimated many (many) times.

- “Core” of many larger-scale models.

- 36 estimated parameters.

- RWMH: 10 million draws (5 million discarded); SMC: 500 stages with 12,000 particles.

- We run the RWM (using a particular version of a parallelized MCMC) and the SMC algorithm on 24 processors for the same amount of time.

- We estimate the SW model twenty times using RWM and SMC and get essentially identical results.
More interesting question: how does quality of posterior simulators change as one makes the priors more diffuse?

Replace Beta by Uniform distributions; increase variances of parameters with Gamma and Normal prior by factor of 3.
SW Model with DIFFUSE Prior: Estimation stability RWH (black) versus SMC (red)
A Measure of Effective Number of Draws

- Suppose we could generate \(iid N_{eff} \) draws from posterior, then
 \[
 \hat{E}_\pi[\theta] \approx \mathcal{N}\left(E_\pi[\theta], \frac{1}{N_{eff}} \nabla_\pi[\theta]\right).
 \]

- We can measure the variance of \(\hat{E}_\pi[\theta] \) by running SMC and RWM algorithm repeatedly.

- Then,
 \[
 N_{eff} \approx \frac{\nabla_\pi[\theta]}{\nabla[\hat{E}_\pi[\theta]]}
 \]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>STD(Mean)</th>
<th>N_{eff}</th>
<th>Mean</th>
<th>STD(Mean)</th>
<th>N_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_l</td>
<td>3.06</td>
<td>0.04</td>
<td>1058</td>
<td>3.04</td>
<td>0.15</td>
<td>60</td>
</tr>
<tr>
<td>l</td>
<td>-0.06</td>
<td>0.07</td>
<td>732</td>
<td>-0.01</td>
<td>0.16</td>
<td>177</td>
</tr>
<tr>
<td>ι_p</td>
<td>0.11</td>
<td>0.00</td>
<td>637</td>
<td>0.12</td>
<td>0.02</td>
<td>19</td>
</tr>
<tr>
<td>h</td>
<td>0.70</td>
<td>0.00</td>
<td>522</td>
<td>0.69</td>
<td>0.03</td>
<td>5</td>
</tr>
<tr>
<td>Φ</td>
<td>1.71</td>
<td>0.01</td>
<td>514</td>
<td>1.69</td>
<td>0.04</td>
<td>10</td>
</tr>
<tr>
<td>r_{π}</td>
<td>2.78</td>
<td>0.02</td>
<td>507</td>
<td>2.76</td>
<td>0.03</td>
<td>159</td>
</tr>
<tr>
<td>ρ_b</td>
<td>0.19</td>
<td>0.01</td>
<td>440</td>
<td>0.21</td>
<td>0.08</td>
<td>3</td>
</tr>
<tr>
<td>φ</td>
<td>8.12</td>
<td>0.16</td>
<td>266</td>
<td>7.98</td>
<td>1.03</td>
<td>6</td>
</tr>
<tr>
<td>σ_p</td>
<td>0.14</td>
<td>0.00</td>
<td>126</td>
<td>0.15</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>ξ_p</td>
<td>0.72</td>
<td>0.01</td>
<td>91</td>
<td>0.73</td>
<td>0.03</td>
<td>5</td>
</tr>
<tr>
<td>ι_w</td>
<td>0.73</td>
<td>0.02</td>
<td>87</td>
<td>0.72</td>
<td>0.03</td>
<td>36</td>
</tr>
<tr>
<td>μ_p</td>
<td>0.77</td>
<td>0.02</td>
<td>77</td>
<td>0.80</td>
<td>0.10</td>
<td>3</td>
</tr>
<tr>
<td>ρ_w</td>
<td>0.69</td>
<td>0.04</td>
<td>49</td>
<td>0.69</td>
<td>0.09</td>
<td>11</td>
</tr>
<tr>
<td>μ_w</td>
<td>0.63</td>
<td>0.05</td>
<td>49</td>
<td>0.63</td>
<td>0.09</td>
<td>11</td>
</tr>
<tr>
<td>ξ_w</td>
<td>0.93</td>
<td>0.01</td>
<td>43</td>
<td>0.93</td>
<td>0.02</td>
<td>8</td>
</tr>
</tbody>
</table>
A Closer Look at the Posterior: Two Modes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mode 1</th>
<th>Mode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_w</td>
<td>0.844</td>
<td>0.962</td>
</tr>
<tr>
<td>ι_w</td>
<td>0.812</td>
<td>0.918</td>
</tr>
<tr>
<td>ρ_w</td>
<td>0.997</td>
<td>0.394</td>
</tr>
<tr>
<td>μ_w</td>
<td>0.978</td>
<td>0.267</td>
</tr>
<tr>
<td>Log Posterior</td>
<td>-804.14</td>
<td>-803.51</td>
</tr>
</tbody>
</table>

- **Mode 1** implies that wage persistence is driven by extremely *exogenous* persistent wage markup shocks.
- **Mode 2** implies that wage persistence is driven by *endogenous* amplification of shocks through the wage Calvo and indexation parameter.
- SMC is able to capture the two modes.
A Closer Look at the Posterior: Internal ξ_w versus External ρ_w Propagation

E. Herbst and F. Schorfheide

SMC for DSGE Models
Stability of Posterior Computations: RWH (black) versus SMC (red)

\begin{align*}
P(\xi_w > \rho_w) &\quad P(\rho_w > \mu_w) &\quad P(\xi_w > \mu_w) &\quad P(\xi_p > \rho_p) &\quad P(\rho_p > \mu_p) &\quad P(\xi_p > \mu_p) \\
0 &\quad 0.1 &\quad 0.2 &\quad 0.3 &\quad 0.4 &\quad 0.5 &\quad 0.6 &\quad 0.7 &\quad 0.8 &\quad 0.9 &\quad 1
\end{align*}