Inflationary equilibrium in a stochastic economy with independent agents

John Geanakoplosa,b,*, Ioannis Karatzasc,d, Martin Shubika,b, William D. Sudderthe

a Yale University, Box 208281, New Haven, CT 06520-8281, United States
b Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States
c Columbia University, MC 4438, New York, NY 10027, United States
d INTECH Investment Management, One Palmer Square, Suite 441, Princeton, NJ 08542, United States
e University of Minnesota, 224 Church Street SE, Minneapolis, MN 55455, United States

A R T I C L E I N F O

Article history:
Received 30 September 2013
Accepted 24 February 2014
Available online 1 March 2014

Keywords:
Inflation
Economic equilibrium and dynamics
Dynamic programming
Consumption

A B S T R A C T

We prove the existence of stationary monetary equilibrium with inflation in a “Bewley” model with constant aggregate real variables but with idiosyncratic shocks to the endowments of a continuum of individual agents, when a central bank stands ready to borrow or lend fiat money at a fixed nominal rate of interest and the agents face borrowing constraints. We also find that, in the presence of real micro uncertainty about individual endowments, the rate of inflation is higher (equivalently, the real rate of interest is lower) than it would be in a “certainty-equivalent economy”; to wit, one in which every agent’s endowment is replaced by its expected value. Thus, underlying microeconomic uncertainty and borrowing constraints are shown to generate additional inflation.

© 2014 Published by Elsevier B.V.

1. Introduction

We seek to understand the behavior of prices and money in a simple infinite-horizon economy with a central bank and one nondurable commodity. Following Bewley (1986) we consider an economy in which a continuum of agents are subject to idiosyncratic, independent and identically distributed random shocks to their endowments. At the micro level the economy is in perpetual flux but, at the macro level, aggregate endowments remain constant across time and states. We prove the existence of a stationary equilibrium that also remains rock-steady at the macro level despite micro turmoil in individual consumption and saving. Stationary equilibrium means that markets clear, and prices and money grow at a deterministic rate τ, all the while maintaining the same distribution of real (inflation-corrected) wealth across agents. In each period some formerly rich agents may become poor, and vice versa, but the fraction of the population at every level of real wealth remains the same.

Bewley proved the existence of a stationary equilibrium in a more general economy than ours, allowing for example for multiple commodities.1 But his model did not have a central bank that could change the supply of money over time, and therefore had no inflation in equilibrium. Inflation seems to complicate the question of existence of equilibrium. We are not aware of any other existence proof for stationary equilibrium with inflation in a Bewley-style model.

On the other hand, there is a large literature on a similar kind of model without money, but with a capital sector that can be used to produce output. Huggett (1993) and Aiyagari (1994) prove the existence of stationary equilibrium.2 Our method of proof uses many of the same elements: we invoke properties of the dynamic programming problem just as they did, and then we analyze a fixed point problem involving the real rate of interest (or equivalently the rate of inflation) much like they did. More recently Miao (2002)

1 Bewley also allowed for Markovian random endowments and for heterogeneous utility functions. All of these extensions could probably be accommodated in our setting as well.

2 Huggett’s proof is for the special case where endowments can take on only two values and utility is given by the functional form $u(x) = x^\alpha$. Aiyagari states his existence theorem, but the proof appears in an appendix that was not published. The working paper version of the proof is missing some details.
and Kuhn (2013) have given existence proofs in similar kinds of models based on lattice theory. The details of our proof are different, and we use different assumptions on the utilities. There is no fiat money in these other models.

Huggett (1997) and Aiyagari (1994), like Laitner (1979, 1992), Bewley (1986), and Clarida (1990) before them in somewhat different models, prove that the stationary real rate of interest is below the time discounting of the agents, without invoking any assumption on the third derivative of the utilities.\(^3\) The cause is the constraint on borrowing. Ljungqvist and Sargent (2000) survey these papers. We obtain analogous results for our model, which differs in having fiat money with inflation.

In this paper we study a model with a continuum of agents with a common discount rate \(\beta\) and common instantaneous utility function \(u(\cdot)\), but with idiosyncratic shocks to their endowments that leave the aggregate endowment constant. For such a model, and without borrowing or lending, it is already known that there exists in general a stationary equilibrium with a stationary distribution of nominal wealth and a constant commodity price; cf. Karatzas et al. (1994). Bewley (1986) showed that such a noninflationary stationary equilibrium also exists when there is borrowing and lending but at a zero rate of interest. We confirm this result in Section 7.6.

We add to the model a central bank committed to borrowing or lending with every agent at a fixed nominal interest rate \(\rho > 0\). After the recent changes at the Fed instituted by chairman Bernanke, this corresponds to the ability of the American central bank to pay interest on deposits as well as to receive interest on loans. We do not add a Treasury to the model; we simply allow the central bank to print as much money as it needs to in order to pay depositors' interest, or to retire as much money as it receives from interest payments it receives. We also assume a cash-in-advance constraint, so that all individual purchases of goods must be paid for by cash. In the Bewley (1986) model, agents could purchase commodities by using the revenue obtained by the simultaneous selling of other commodities; implicitly Bewley assumed a standing credit market at zero rate of interest. In our model agents must sell their entire endowment for cash, while simultaneously buying goods for cash (perhaps borrowed, but at a rate \(\rho > 0\)). One interpretation, similar to that used by Lucas, is that the productive and consumption arms of each agent act separately.\(^4\) This sell--all assumption makes the existence of monetary equilibrium easier to demonstrate. Nevertheless, with a central bank fixing a positive rate of interest, a noninflationary equilibrium rarely exists. (A necessary condition for existence is that the bank selects an interest rate that "balances the books" so that all the lending comes from one agent to another and the aggregate money supply remains constant; see Karatzas et al., 1997 and Geanakoplos et al., 2000.) In an inflationary equilibrium, the supply of outside money that agents own free and clear of any obligations at the beginning of each period must change over time. This non-existence of stationary equilibrium creates the added complication in our models compared to the rest of the Bewley-style literature.

We prove here the existence of stationary inflation-corrected equilibrium, under certain technical conditions and under a critical borrowing constraint (Theorem 7.1), for any \(\rho > 0\). More specifically, we assume that all agents have a strictly concave utility function \(u(\cdot)\) whose derivative is bounded away from zero. Another important assumption is that agents can only borrow up to a fraction \(\theta\) of the discounted value of their current endowment. As long as \(\theta \leq 1\), we have a model of lending secured by future income and without any chance of default around equilibrium. We were not able to establish existence in general with \(\theta = 1\), though we show that such an equilibrium does exist in the absence of microeconomic uncertainty (Example 6.1). Instead we prove the weaker result that stationary inflation-corrected equilibrium exists whenever \(0 \leq \theta \leq \theta^*(\rho)\), where the upper bound \(\theta^*(\rho) \in (0, 1)\) decreases as \(\rho\) increases. The need for such an upper bound illustrates the difference between our model and the previous Bewley, Huggett, and Aiyagari models.

The existence of inflation-corrected equilibrium allows us to study the effect of micro uncertainty and of the borrowing constraint on the rate of inflation and on the real rate of interest. In a world of micro certainty, which we could obtain in our setting by replacing each individual agent's random endowment with its expected value, the rate of inflation \(\tau\) would necessarily satisfy the famous Fisher equation

\[
\tau = \beta(1 + \rho),
\]

provided \(\theta = 1\). The Fisher equation also holds in our model, even with uncertainty, if the equilibrium is interior; that is, if agents never forgone consumption and if they are never forced by the collateral constraint to borrow less than they would like (Theorem 5.1).

We prove, however, that if \(\theta \leq \theta^*(\rho)\), then there is always an equilibrium in which \(\tau > \beta(1 + \rho)\), whether or not there is micro uncertainty and no matter what the sign of \(u''(\cdot)\) (Theorem 7.1). Our paper thus establishes the principle that borrowing constraints generate additional inflation beyond what would be predicted by the central bank rate of interest and the discount rate of the agents.

We prove that if there is genuine micro uncertainty, and if the marginal utility function \(u'(\cdot)\) is strictly convex, then all stationary equilibria have \(\tau > \beta(1 + \rho)\), irrespective of the bound \(\theta\) on borrowing. Thus, with genuine randomness in the endowments and with \(u'(\cdot)\) strictly convex, stationary equilibrium can only exist when a non-negligible fraction of the agents is up against their borrowing constraints (Theorem 5.2). Thus micro uncertainty and borrowing constraints increase the rate of inflation beyond what might be expected from the Fisher equation. We can also interpret our result in terms of the implied real rate of interest rather than in terms of the rate of inflation. Fisher defined the real rate of interest \(\bar{\rho}\) by

\[
1 + \bar{\rho} = \frac{1 + \rho}{\tau}.
\]

In our model with certainty and \(\theta = 1\), the Fisher equation must hold; that is, the real rate of interest necessarily equals the reciprocal of the discount: \(1/\beta = 1 + \bar{\rho}\). Our Theorems 7.1 and 5.2 show that, with genuine micro uncertainty, the real rate of interest will be less than the reciprocal of the time discount. This interpretation of our inflation principle shows its close resemblance to the results of Huggett (1997), Aiyagari (1994), Laitner (1979, 1992), Bewley (1986), and Clarida (1990), where it is typically assumed that the agents can trade a real bond that pays the same inflation-corrected amount in each future state.

In an earlier paper on this subject (Karatzas et al., 2006) we showed that macroeconomic uncertainty creates inflation. There we had a representative agent and random i.i.d. aggregate endowments. Prices necessarily jumped around from period to period, but we showed that, in stationary equilibrium, the long-run rate of inflation was always uniquely defined and higher than \(\beta(1 + \rho)\). There we did not need to invoke a borrowing constraint more severe than necessary to rule out default. Taken together, our two papers provide a causal link between fluctuations in endowments (or production) and inflation.

A precise formulation of our model, and of equilibrium, is given in the next section. The notion of stationary equilibrium is defined.
in Section 3. Section 4 describes the optimization problem of the agent in our infinite-horizon economy. Section 5 is on interior equilibria and the Fisher equation. Section 6 presents two simple examples for which stationary interior equilibria exist, an example with a non-interior equilibrium with inflation rate \(\tau > 1 \), and also an example with no stationary equilibrium. Our existence proof is in Section 7. The final section has a brief comparison of the representative agent model to the model of this paper.

2. The model

The model runs in discrete time units \(n = 1, 2, \ldots \) and has a continuum of agents \(\alpha \in I \) indexed by the unit interval \(I = [0, 1] \). Each agent \(\alpha \) seeks to maximize the expectation of his total discounted utility from consumption, namely

\[
E \left(\sum_{n=1}^{\infty} \beta^{n-1} u(c_n^\omega) \right).
\]

(2.1)

Here \(\beta \in (0, 1) \) is a discount factor, \(c_n^\omega \) is the agent’s (possibly random) consumption in period \(n \), and \(u : [0, \infty) \to [0, \infty) \) is a concave, continuous, nondecreasing utility function with \(u(0) = 0 \). The utility function \(u(\cdot) \) is assumed to be the same for all agents, but agent endowments are heterogeneous.

At time-period \(n = 1 \), each agent begins with a non-random amount \(m_1^\alpha \in [0, \infty) \) of cash (flat money, or nominal wealth); there is no dispensation of cash thereafter. The total amount of cash initially held by the agents is the constant

\[
M_1 = \int_I m_1^\alpha \, d\alpha,
\]

which we assume to be finite and strictly positive.

At each time-period \(n \geq 1 \), every agent receives an endowment \(Y_n^\alpha \geq 0 \) of the (perishable) consumption good. The random variables \(Y_n^\alpha \), and all other random variables in this paper, are defined on a given probability space \((\Omega, \mathcal{F}, \mathbb{P})\). All the variables \(Y_n^\alpha, \alpha \in I, n \in \mathbb{N} \) are assumed to be nonnegative and to have a common distribution \(\lambda \) with

\[
0 < Q := \int_{[0,\infty)} y \lambda(dy) < \infty.
\]

For each agent \(\alpha \), the random variables \(Y_n^1, Y_n^2, \ldots \) are assumed to be independent as well as identically distributed.

If we were to assume that, for each \(n \in \mathbb{N} \), the random commodity endowments \(Y_n^\alpha \) were the same for all agents \(\alpha \in I \), then we would have the representative agent model of Karatzas et al. (2006). The model of the present paper differs from the representative agent model, in that the random endowments vary from agent to agent and aggregate to a constant. Thus, we assume that the integrals

\[
\int_I Y_n^\alpha(\omega) \, d\alpha = Q_n(\omega) = Q
\]

(2.2)

are constant across time-periods \(n \in \mathbb{N} \) and states \(\omega \in \Omega \). We assume further that the random endowments \(Y_n(\alpha, \omega) \equiv Y_n^\alpha(\omega) \) are jointly measurable in \((\alpha, \omega)\), where the variable \(\alpha \) ranges over the index set \(I = [0, 1] \) and the variable \(\omega \) ranges over the probability space \(\Omega \). Furthermore, the distribution of \(Y_n(\cdot, \omega) \) on \(I \) is the same for each fixed \(\omega \), as that of \(Y_n(\cdot, \cdot) \) on \(\Omega \) for each fixed \(\alpha \); this common distribution, namely \(\lambda \), is assumed also to be constant in \(n \). A simple construction of random variables with these properties is in Feldman and Gilles, 1985.) We often use \(Y \) to denote a generic random variable that has this distribution. A consequence of our assumptions about the random endowments is that

\[
\mathbb{E}(Y) = \int_\Omega Y_1(\alpha, \omega) \mathbb{P}(d\omega) = \int_\Omega Y_1(\alpha, \omega) \, d\alpha = Q.
\]

2.1. Money and commodity markets

Agents know the central bank interest rate \(\rho \), and they know the equilibrium price function \(p_n(\omega) \). Each period \(n \) begins with the agents learning their endowments \(Y_n^\omega(\omega) \) and the commodity price \(p_n(\omega) \). Since in the equilibrium we study \(p_n(\omega) = p \) does not depend on the state of nature \(\omega \), we do not need to explain how they come to know the price before the market meets.

Two markets meet in every period. First, each agent can borrow cash from (or deposit cash into) a central bank at the fixed interest rate \(\rho \geq 0 \) set by the central bank. Next, agents must sell all their endowment of the good for cash in a commodity market. At the same time, each agent \(\alpha \) bids an amount \(b_n^\alpha(\omega) \) of cash, to purchase goods for consumption from the market. These purchases and sales come at the same price \(p_n(\omega) \). At the end of the time-period, loans come due.

The budget set of each agent \(\alpha \in I \) is then defined recursively as follows: let \(m_n^\alpha(\omega) \) be the amount of cash or nominal wealth with which the agent enters period \(n \), and recall that the initial amount of cash \(m_0^\alpha(\omega) = m_0^\alpha \) has been fixed. In period \(n \) the agent can lend no more than the cash \(m_n^\alpha(\omega) \) he has on hand; he is allowed to borrow no more than the choice \(\theta n(\omega) Y_n^\omega(\omega)/(1 + \rho) \) of the agent will be able to pay back the loan with interest from the revenue derived from the sale of his endowment \(Y_n^\omega(\omega) \). The choice \(\theta = 1 \) of the parameter means the bank is willing to grant full credit, while the choice \(\theta = 0 \) means the bank will lend nothing at all; choices of \(\theta \in (0, 1) \) correspond to levels of partial credit.

After leaving the loan market the agent can bid at most the cash he has on hand, plus the amount he has borrowed, so \(b_n^\alpha(\omega) \) is required to satisfy

\[
0 \leq b_n^\alpha(\omega) \leq m_n^\alpha(\omega) + \theta p_n(\omega) Y_n^\omega(\omega)/(1 + \rho).
\]

The agent is borrowing \(b_n^\alpha(\omega) - m_n^\alpha(\omega) \) if that is positive or lending \(m_n^\alpha(\omega) - b_n^\alpha(\omega) \) otherwise.

The agent \(\alpha \in I \) receives from the market his bid’s worth of goods \(c_n^\alpha(\omega) = b_n^\alpha(\omega)/p_n(\omega) \) and consumes these perishable goods immediately, thereby receiving \(u(c_n^\alpha(\omega)) \) in utility. He then repays the bank in full and with interest, or is repaid himself with interest on his loan. Thus, at the beginning of the next period, the agent has a random endowment \(Y_{n+1}^\alpha(\omega) \) of goods and an amount

\[
m_{n+1}^\alpha(\omega) = (1 + \rho)(m_n^\alpha(\omega) - b_n^\alpha(\omega)) + p_n(\omega) Y_n^\omega(\omega)
\]

(2.3)

in cash. When the agent chooses his credit decision and his bid \(b_n^\alpha(\omega) \) at time \(n \), he is assumed to know his cash position \(m_n^\alpha(\omega) \), his endowment \(Y_n^\omega(\omega) \), the price \(p_n(\omega) \), as well as the bank interest rate \(\rho \).

2.2. Equilibrium

We shall define formally a special kind of equilibrium in the next section. Roughly speaking, equilibrium is given by prices \(p_n(\omega) \) and choices \(b_n^\alpha(\omega) \) that maximize each agent’s expected total discounted utility over his budget set, in such a way that \(b_n^\alpha(\omega) \) is measurable in \(\alpha \) for every \(n \) and every market clears. Denoting the total bid by \(B_n(\omega) := \int b_n^\alpha(\omega) \, d\alpha \) and the total endowment of goods offered for sale by \(Q_n(\omega) := \int Y_n^\omega(\omega) \, d\alpha = Q \), commodity market-clearing means

\[
p_n(\omega) = \frac{B_n(\omega)}{Q}.
\]

Let \(C_n(\omega) := \int c_n^\alpha(\omega) \, d\alpha \) be the total consumption in period \(n \). When the commodity market clears, we have

\[
C_n(\omega) = \frac{B_n(\omega)}{p_n(\omega)} = Q_n(\omega) = Q.
\]
Note that the credit markets clear automatically, since the central bank stands ready to absorb any excess lending or borrowing.

Suppose we are in equilibrium, and denote the total amount of cash (or money supply, or total nominal wealth) held by the agents in period n by

$$M_n(\omega) := \int m_n^\alpha(\omega) \, d\alpha.$$

Integrating out α in the law of motion (2.3), we obtain

$$M_{n+1}(\omega) = (1 + \rho)(M_n(\omega) - B_n(\omega)) + B_n(\omega) \cdot Q_n(\omega) = (1 + \rho)M_n(\omega) - \rho B_n(\omega). \quad (2.4)$$

This equality can be rewritten as

$$M_{n+1}(\omega) - M_n(\omega) = \rho (M_n(\omega) - B_n(\omega)).$$

reflecting the policy of the central bank to pay nominal interest ρ on all deposits and stand ready to print the necessary amount of new cash to cover the expenditure from these interest payments. If $\rho = 0$, then $M_{n+1}(\omega) = M_n(\omega)$ and the money supply is the same in every period.

It is possible for the money supply to be conserved in equilibrium even for some $\rho > 0$; see Karatzas et al. (1997) and Geanakoplos et al. (2000). However, one expects that generically the money supply will not remain constant when $\rho > 0$: genuine inflation must then be considered.

3. Stationary Markovian equilibrium with inflation

In this section we define stationary equilibrium. As we saw in the last section, this will often require a non-zero inflation rate.

A stationary Markovian equilibrium with inflation (stationary equilibrium, or SE for short) is an equilibrium, as described briefly in the last section, that turns out to be completely deterministic in the aggregate level but possibly very random at the micro level. More precisely, it is an equilibrium in which the price level and the money supply grow deterministically at a constant inflation rate, and the distribution of real wealth stays the same each period. Formally, we require conditions (a), (b), and (c) below.

3.1. Definition of inflation-corrected SE

In period $n = 1$ the price level is the number $p_1 \in (0, \infty)$, and in every subsequent period it rises (or falls) at some constant rate $\tau > 0$:

(a) $p_n(\omega) = \tau^{n-1} p_1$ for all $n \geq 1, \omega \in \Omega$.

Similarly, the aggregate money supply starts out at $M_1 = \int m_1^\alpha \, d\alpha \in (0, \infty)$ and should rise (or fall) deterministically at the same inflation rate τ thereafter:

(b) $M_n(\omega) = \tau^{n-1} M_1$ for all $n \geq 1, \omega \in \Omega$.

The purchasing power of one dollar of money, or a real dollar, is defined in any period or state by the reciprocal of the price level $1/p_n(\omega)$. The real wealth, with which an agent starts a period, is then given by $r_n^\alpha(\omega) = m_n^\alpha(\omega)/p_n(\omega)$ and his initial real wealth is

$$r_1^\alpha = m_1^\alpha/p_1.$$

The aggregate purchasing power, or aggregate real wealth, must then be a constant in SE, namely

$$R_n(\omega) := \int r_n^\alpha(\omega) \, d\alpha = M_n(\omega)/p_n(\omega) = M_1/p_1 = R.$$

Let $\mu_n(\omega)$ be the distribution of real wealth in period n, defined by

$$\mu_n(\omega)(E) := \mathcal{L} \left(\{ \alpha \in [0, 1] : r_n^\alpha(\omega) \in E \} \right),$$

where \mathcal{L} is Lebesgue measure and E is a Borel subset of $[0, \infty)$ (we include ω in this definition to emphasize that, in general, the measures μ_n are random). The mean of $\mu_n(\omega)$ is just the aggregate real wealth in period n, that is,

$$\int_0^{\infty} r \, \mu_n(\omega)(dr) = \int r_n^\alpha(\omega) \, d\alpha = R_n(\omega) = R.$$

In stationary equilibrium we should have that μ_n remains the same in every period and in every state:

(c) $\mu_n(\omega) = \mu$ for all $n \geq 1, \omega \in \Omega$.

3.2. Macro equations in inflation-corrected SE

It is worthwhile noting five macro equations, namely (3.3)-(3.7) below, that must hold in stationary equilibrium. Dividing by $p_n(\omega)$ in the law of motion (2.3) and recalling that in stationary equilibrium $\tau = p_{n+1}(\omega)/p_n(\omega)$, we get

$$m_n^\alpha(\omega)/p_n(\omega) = (1 + \rho)(m_n^\alpha(\omega) - b_n^\alpha(\omega))/p_n(\omega) + Y_n^\alpha(\omega) \quad (3.1)$$

or equivalently

$$r_n^\alpha(\omega) \cdot \tau = (1 + \rho)(r_n^\alpha(\omega) - c_n^\alpha(\omega)) + Y_n^\alpha(\omega). \quad (3.2)$$

Integrating the last equation over agents $\alpha \in I$, and noting that in stationary equilibrium the macro variables do not depend on ω, we get the macro law of motion

$$R_n + \tau = (1 + \rho)(R_n - C_n) + Q. \quad (3.3)$$

In stationary equilibrium we must also have

$$\mu_{n+1} = \mu_n = \mu, \quad (3.4)$$

and from this it follows

$$R_{n+1} = \tau R_n. \quad (3.5)$$

We also need to clear the commodity markets; that is, we need

$$C_{n+1} = C_n = Q. \quad (3.6)$$

The macro law of motion (3.3), together with (3.5) and (3.6), guarantees that

$$\tau = 1 + \rho - \rho \cdot \frac{Q}{R}, \quad (3.7)$$

as can be seen by substitution.

Conversely, (3.3), (3.4), and (3.7) guarantee (3.5) and (3.6).

Remark. The conditions (a), (b), and (c) also follow from (3.3)-(3.7). Indeed, condition (c) is the same as (3.4). To obtain condition (a), we integrate with respect to α in (3.1) and use (3.3), to obtain

$$\frac{M_{n+1}}{p_{n+1}} = (1 + \rho)\left(\frac{M_n}{p_n} - \frac{B_n}{p_n} \right) + Q = (1 + \rho)(R_n - C_n) + Q = \tau \cdot R_{n+1} = \tau \cdot \frac{M_{n+1}}{p_{n+1}}.$$

Hence, $p_{n+1} = \tau \cdot p_n$ and (a) holds. We then have from (3.5) that

$$R = R_n = \frac{M_n}{p_n} = \frac{M_n}{\tau^{n-1} \cdot p_1}, \quad \text{thus } M_{n} = \tau^{n-1} p_1 \cdot R = \tau^{n-1} M_1$$

and (b) also holds.
3.3. Finding stationary equilibrium

As long as the inflation and interest rates remain constant and the random endowments are independent and identically distributed from period to period, the optimal strategy for any agent is clearly to make a bid which determines a consumption that depends only on his current real wealth \(r \) and commodity endowment \(y \).

Let \(c(\cdot, \cdot) \) be a measurable function specifying the consumption \(c(r, y) \) for an agent with real wealth \(r \) and goods \(y \). The consumption function \(c(\cdot, \cdot) \) is said to be budget-feasible for the credit parameter \(\theta \) if, for all \(r \geq 0 \) and \(y \geq 0 \), we have

\[
0 \leq c(r, y) \leq r + \frac{\theta y}{1 + \rho}.
\] (3.8)

(A colleague points out that in many macro models the quantity \((1 + \rho)r + y\) of “cash on hand” is a sufficient state, but this is not the case here because of the borrowing constraint.) Such a function \(c(\cdot, \cdot) \) determines budget-feasible bids for all agents \(\alpha \in I \) according to

\[
b^\alpha_r(\omega) = p_\alpha(\omega) c(\cdot, \cdot)(\omega), \quad \forall n \in N, \omega \in \Omega.
\] (3.9)

To find an SE, we can first guess a consumption function \(c(\cdot, \cdot) \) and an initial distribution \(\mu \) of real wealth. Then we let \(R = R(\mu) \) be the mean of \(\mu \), and set \(\tau = \tau(\mu) \) according to the equality (3.7). To see whether the pair \((\mu, \tau)\) determines an SE we must check that, if every agent follows the consumption strategy \(c(\cdot, \cdot) \) (that is, bids according to the recipe in (3.9) using only knowledge of his current real wealth, of his current endowment, and of the currently prevailing price), and if the random variables \(R \) (a proxy for real wealth) and \(Y \) (a proxy for endowment) are independent with distributions \(\mu \) and \(\lambda \), respectively, then

\[
\tilde{R} := \frac{1 + \rho (R - c(R, Y) + Y)}{\tau},
\] (3.10)

the proxy for the new real wealth induced by the law of motion, has again distribution \(\mu \).

Indeed, the equalities (3.3) and (3.4) are immediate and (3.7) holds by construction. Conditions (a), (b), and (c) follow as was explained in the remark of the preceding section. Lastly, we must verify that the consumption function strategy \(c(\cdot, \cdot) \) is optimal for the individual agents’ problem. The next section discusses how.

4. Dynamic programming for a single agent

Suppose the economy is in stationary equilibrium with inflation rate \(\tau \). Then a single agent with real wealth \(r \) and goods \(y \) faces an infinite-horizon dynamic programming problem. In this section we collect several properties of this one-person problem for use in subsequent sections.

Recall that the utility function \(u(\cdot) \) is assumed to be a concave, continuous, nondecreasing mapping from \([0, \infty)\) into itself. Let \(V(r, y) \equiv V(r, y)(r, y) \) be the agent’s value function; that is, \(V(r, y) \) is the supremum over all strategies of the agent’s expected discounted total utility in (2.1).

If \(\beta(1 + \rho) > \tau \), then it can happen that \(V(r, y) = \infty \). For example, if \(u(x) = x \) and \(r_1 > 0 \), an agent can save all his money for the first \(m \) periods so that \(r_n = (1 + \rho)\tau \}, \) then spend it all on consumption to obtain a discounted utility of at least \(\beta (1 + \rho)/\tau \} \). This quantity can then be made arbitrarily large, by choosing \(n \) to be large.

If the utility function \(u(\cdot) \) is bounded, or if \(\beta(1 + \rho) \leq \tau \), then it is not difficult to see that \(V(r, y) < \infty \). (Notice that the concave, real-valued function \(u(\cdot) \) is dominated by some affine function \(u(x) = a + bx \) and so it suffices to check that \(V(\cdot, \cdot) \) is finite for linear utilities.) In our search for stationary equilibria, we confine ourselves to the case \(\beta(1 + \rho) \leq \tau \). Thus, to avoid annoying technicalities, we assume that \(V(\cdot, \cdot) \) is everywhere finite.

A plan \(\pi \) is called optimal if, for every initial position \((r, y)\), the expected value under \(\pi \) of the total discounted utility is \(V(r, y) \).

\[\text{Lemma 4.1. (a) The value function } V(\cdot, \cdot) \text{ is concave, and satisfies the Bellman equation} \]

\[V(r, y) = \sup_{\theta \geq \frac{\tau}{1 + \rho}} V(\cdot, \cdot) \] (4.1)

where

\[V(r, y) = u(c) + \beta \cdot \mathbb{E} V \left(\frac{1 + \rho}{\tau} (r - c) + \frac{y}{\tau} \right). \] (4.2)

(b) If the stationary plan \(\pi = c^\infty \) is optimal, then \(c(\cdot, \cdot) \) is bounded, \(\lambda \), and \(\mu \) is an optimal plan.

Sketch of Proof. The proof that \(V(\cdot, \cdot) \) is concave is similar to that given for Theorem 4.2 in Geanakoplos et al. (2000) (the main ideas go back at least to Bellman, 1957).

The Bellman equation holds in general generality; see, for example, Section 9.4 of Bertsekas and Shreve (1978)—which also contains standard facts from dynamic programming that lead to assertion (b).

Part (c) follows from the characterization, originally due to Dubins and Savage (1965), of optimal strategies as being those that are both “thrift” and “equalizing.” In our context, “thriftiness” is equivalent to the condition that \(\tau \) selects actions which attain the supremum in the Bellman equation. On the other hand, every plan is equalizing if \(\tau > \beta(1 + \rho) \) holds, or if the utility function \(u(\cdot) \) is bounded; see Rieder (1976) or Karatzas and Sudderth (2010) for a development of the Dubins–Savage characterization in the context of dynamic programming.

For the rest of this section we impose the following additional requirements on the utility function.

Assumption 4.1. The utility function \(u(\cdot) \) is strictly concave and strictly increasing on \([0, \infty)\), differentiable on \((0, \infty)\) with \(0 < u'(0) < \infty \).

The function \(V(\cdot, \cdot) \equiv V(\cdot, \cdot)(c, V) \) of (4.2) is concave, since both \(u(\cdot) \) and \(V(\cdot, \cdot) \) are concave. Also, \(V(\cdot, \cdot) \) is strictly concave when \(u(\cdot) \) is, and therefore achieves its maximum at a unique point. We define a specific bid function \(c(\cdot, \cdot) = c(\cdot, \cdot)(\cdot, \cdot) \) by

\[c(\cdot, \cdot) = \arg \max \left\{ V(c(\cdot, \cdot)) : 0 \leq c \leq r + \frac{\theta y}{1 + \rho} \right\}. \] (4.3)

Under Assumption 4.1 it follows from Lemma 4.1(b) that, if there is an optimal plan, then it must be the plan \(\pi = c^\infty \). Furthermore, if either \(\tau > \beta(1 + \rho) \) or \(u(\cdot) \) is bounded, then, by Lemma 4.1(b) and (c), \(\pi = c^\infty \) is the unique optimal plan.

The next lemma and its proof are similar to results in Geanakoplos et al. (2000).

Lemma 4.2. Under Assumption 4.1 we have:

(a) The value function \(V(r, y) \) is strictly increasing in each variable \(r, y \).

If, in addition, the plan \(\pi = c^\infty \) is optimal, then
(b) The value function $V(r, y)$ is strictly concave in each variable r and y.
(c) The functions $c(r, y)$ and $r - c(r, y)$ are strictly increasing in r, for each fixed y. Hence $c(r, y)$ is continuous in r, for each fixed y. Also, $c(r, y)$ is strictly increasing in y, for each fixed r.
(d) $c(r, y) \to \infty$ as $r \to \infty$ for fixed y.
(e) $c(r, y) > 0$ if $\max[r, y] > 0$ and $r > \beta(1 + \rho)$.

Proof. Part (a) is clear from the fact that an agent with more cash or goods can spend more at the first stage and be in the same position at the next stage as an agent with less. For part (b) we will show the strict concavity of $V(r, y)$ in r. The proof of strict concavity in y is similar. Let us consider, then, two pairs (r, y) and (\tilde{r}, \tilde{y}) with $r < \tilde{r}$, and set $\bar{r} = (r + \tilde{r})/2$. It suffices to show that $V(\bar{r}, \tilde{y}) > V(r, \tilde{y}) + V(\tilde{r}, y)/2$. Let $(r_1, y_1) = (r, y)$ and consider the sequence $\{r_n, y_n\}_{n \in \mathbb{N}}$ of successive positions of an agent who starts at (r_1, y_1) and follows the plan π. Also let $(\tilde{r}_1, \tilde{y}_1) = (\tilde{r}, \tilde{y}) = (\bar{r}, \tilde{y})$ and consider the coupled sequence $\{r_n, y_n\}_{n \in \mathbb{N}}$ for an agent who starts at (\bar{r}, \tilde{y}), follows π, and receives the same income variables $y_n = y_n$ for $n \geq 2$. Set $c_n = c(r_n, y_n)$ and $\bar{c}_n = c(\bar{r}_n, y_n)$ for all $n \geq 2$. Finally, consider a third agent who starts at $(\bar{r}, y) = (\bar{r}, \tilde{y})$, receives the same income variables $y_n = y_n$, and, at each successive position, plays the action $\bar{c}_n = (\bar{c}_n + c_1)/2$. Let $(\bar{r}_n, y_n) = (\bar{r}_n, y_n)$ be the successive positions of this third agent. It is easily verified that $\bar{r}_n = (r_n + \bar{r}_n)/2$ for all $n \geq 2$ and that the actions \bar{c}_n are feasible at every stage. Hence,

$$V(\bar{r}, \tilde{y}) \geq E \left(\sum_{n=1}^{\infty} \beta^{n-1} u(\bar{c}_n) \right).$$

Since $u(\cdot)$ is concave, we have $u(\bar{c}_n) \geq (u(c_n) + u(\bar{c}_n))/2$ for every $n \in \mathbb{N}$, and this inequality must be strict with positive probability for some n. This is because $u(\cdot)$ is strictly concave and $V(\bar{r}, \tilde{y}) > V(r, \tilde{y})$ by part (a), which implies that $\bar{c}_n > c_1$ holds with positive probability for some n. Hence

$$E \sum_{n=1}^{\infty} \beta^{n-1} u(\bar{c}_n) > E \sum_{n=1}^{\infty} \beta^{n-1} (u(c_n) + u(\bar{c}_n))/2 = (V(r, \tilde{y}) + V(\bar{r}, y))/2,$$

and the proof of (b) is now complete. For the proof of part (c), we first observe that if $u(\cdot)$ and $w(\cdot)$ are strictly concave functions defined on $[0, \infty)$, then it is an elementary exercise to show that

$$\arg\max_{0 < c < r + \theta \rho/\tau} \left[u(c) + w(r - c) \right]$$

is strictly increasing in r. By part (b), the function

$$w(x) = \beta \cdot E \left[\frac{1 + \rho}{\tau} \cdot x + \frac{y}{\tau} \right]$$

is strictly concave. Since $\psi_{1,y}(c) = u(c) + w(r - c)$, the strict increase of $c(r, y)$ in r follows from our observation. A symmetric argument shows $r - c(r, y)$ is strictly increasing in r. We can also write $\psi_{1,y}(c) = u(c) + v(r - (1 + \rho)c)$, where

$$v(x) = \beta \cdot E \left[\frac{1 + \rho}{\tau} \cdot x + \frac{1 + \rho}{\tau} \cdot r \right].$$

Thus, a very similar argument shows the strict increase of $c(r, y)$ in y. The proof of δ is the same as the proof of Theorem 4.3 in Karatzas et al. (1994). The proof of (e) is given in detail for a similar problem in Geanakoplos et al. (2000)—see the proof there of Theorem 4.2. □

The bid c is an called interior at position (r, y), if

$$0 < c < r + \frac{\theta y}{1 + \rho}.$$
If an SE is interior, then the Fisher equation must hold, as our next result demonstrates.

Theorem 5.1. In an interior SE, we have $\tau = \beta(1 + \rho)$.

Proof. By interiority, the Euler equation (4.6) holds for almost every (r, y) with respect to the product measure $v = \mu \otimes \lambda$. By stationarity, if the random vector (\mathcal{R}, Y) has distribution v, and if \tilde{Y} is an independent random variable with distribution λ, then in the notation of (3.10) the vector (\mathcal{R}, \tilde{Y}) also has distribution v. But then the Euler equation (4.6) gives a.s.

$$u'(\mathcal{R}, Y) = \frac{\beta(1 + \rho)}{\tau} \cdot \mathbb{E}[u'(c(\mathcal{R}, \tilde{Y})) \mid \mathcal{R}, Y];$$

taking expectations on both sides, recalling that the random vectors (\mathcal{R}, Y) and (\mathcal{R}, \tilde{Y}) have common distribution v, and canceling the common integral on both sides of the resulting equality, we obtain $1 = \beta(1 + \rho)/\tau$. □

We develop in the next section two simple examples of interior SE’s, for which the Fisher equation holds. However, these two examples do not involve uncertainty coupled with risk-aversion; they give a completely misleading picture.

When the marginal utility function $u'(\cdot)$ is strictly convex, and there is uncertainty in the endowments, there is no interior SE and $\tau > \beta(1 + \rho)$. Then the Fisher equation fails in many situations of interest that include the exponential utility function $u(x) = 1 - e^{-x}$, $x \geq 0$, as our next result shows.

Theorem 5.2. Suppose that $u'(\cdot)$ is strictly convex and the endowment random variable Y is not constant. Then, in any SE, we have $\tau > \beta(1 + \rho)$. In particular, there cannot exist an interior SE.

Proof. The second assertion is immediate from the first, in conjunction with Theorem 5.1. To prove the first assertion, assume by way of contradiction that (μ, c) is an SE with $\tau \leq \beta(1 + \rho)$. At any position (r, y) such that $c(r, y) > 0$, Lemma 4.3 gives

$$u'(c(r, y)) \geq \frac{\beta(1 + \rho)}{\tau} \cdot \mathbb{E}[u'(c(\mathcal{R}, \tilde{Y}))]$$

$$\geq \mathbb{E}[u'(c(\mathcal{R}, \tilde{Y}))].$$

Even if $c(r, y) = 0$, it is clear from the concavity of $u'(\cdot)$ that the first term in (5.1) is at least as large as the last term, if we set $u'(0)$ equal to the derivative from the right at zero. By assumption, the distribution λ of \tilde{Y} is not a point-mass and $u'(\cdot)$ is strictly convex. Furthermore, by Lemma 4.2(c), the mapping $y \mapsto c(r, y)$ is strictly increasing, so the distribution of $c(\mathcal{R}, \tilde{Y})$ is nontrivial and Jensen’s inequality gives

$$\mathbb{E}[u'(c(\mathcal{R}, \tilde{Y}))] > u'(\mathbb{E}[c(\mathcal{R}, \tilde{Y})]).$$

Since $u'(\cdot)$ is strictly decreasing, we deduce from (5.1) and (5.2) that the inequality $c(r, y) < \mathbb{E}[c(\mathcal{R}, \tilde{Y})]$ must then hold for all (r, y); in particular, we obtain the a.s. inequality

$$c(\mathcal{R}, Y) < \mathbb{E}[c(\mathcal{R}, \tilde{Y})]$$

in the notation developed for the proof of Theorem 5.1. But this is impossible, since the random vectors (\mathcal{R}, Y) and (\mathcal{R}, \tilde{Y}) have the same distribution in stationary equilibrium. □

6. Three simple examples, and a counterexample

The first example is the case where there is no randomness in the economy.

Example 6.1. Assume that the random variable Y is identically equal to a constant $y > 0$, that the interest rate ρ is strictly positive, and that $\theta = 1$. Suppose that the utility function $u(\cdot)$ satisfies Assumption 4.1. We shall find a class of stationary equilibria.

From the last section we guess that, without uncertainty, there will be an interior equilibrium, and that the Fisher equation will hold (Theorem 5.1), so we conjecture

$$\tau = \beta(1 + \rho).$$

We know from (3.7) that in stationary equilibrium the aggregate real wealth must be

$$R = \frac{\rho}{1 + \rho - \tau} \cdot Q = \frac{\rho}{(1 - \beta)(1 + \rho)} \cdot Q.$$

(6.1)

Let μ be an arbitrary real wealth distribution with mean $\int_{[0,\infty)} r \mu(dr) = R$. Since $\beta(1 + \rho) = \tau$ and Y is the constant y, the Euler equation (4.6) takes the form

$$u'(c(r, y)) = u'(c(\bar{r}, y)),$$

which holds when consumption $c = c(r, y) = c(\bar{r}, y)$ remains constant. Now an agent’s consumption will be constant if his real wealth remains constant, hence we need

$$r = \bar{r} = \frac{1 + \rho}{\tau}(r - c) + \frac{y}{\tau},$$

or equivalently

$$c(r, y) \equiv \bar{c} = [(1 + \rho - \tau)r + y]/(1 + \rho)$$

$$= (1 - \beta)r + \frac{y}{1 + \rho}.$$

(6.2)

This stationary bidding strategy is clearly interior, and satisfies the Euler equation by construction. Likewise, the usual transversality condition clearly holds, since $r_n = r$ for all n and so

$$\beta^n r_n u'(c(r_n, y_n)) = \beta^n u'(c(r, y)) \to 0 \text{ as } n \to \infty.$$

Hence, the bid function $c(\cdot, \cdot)$ of (6.2) determines an optimal strategy (see Stokey and Lucas, 1989).

Since every individual maintains the same real wealth r, the distribution μ of wealth is stationary. It follows that the pair $(\mu, c(\cdot, \cdot))$ is an SE. □

For the next example we take the agents to be risk-neutral.

Example 6.2. Assume that $\rho > 0$, $\theta \in [0, 1]$, and take $u(x) = x$ for all x. For this utility function the Bellman equation of (4.1) is relatively straightforward to solve, and a stationary equilibrium easy to compute. This time we allow for random Y. We showed in Theorem 5.2 that there cannot exist an interior stationary equilibrium for $u(\cdot)$ strictly concave and with strictly convex derivative $u'(\cdot)$. Here, however, $u(\cdot)$ is linear, so we look for an interior SE anyway.

If there is an interior SE, then by Theorem 5.1 the Fisher equation will hold and we can set

$$\tau = \beta(1 + \rho).$$

As before, the aggregate wealth will have to be given by (6.1).

Let μ be an arbitrary real wealth distribution with $\int_{[0,\infty)} r \mu(dr) = R$. Agents could very well pursue exactly the same strategy as in the last example, bidding for consumption

$$c(r, y) = (1 - \beta)r + \frac{y}{1 + \rho},$$

just as in (6.2), when their real wealth is $r \geq 0$ and their commodity endowment is $y \geq 0$. With such a bidding strategy, the relative wealth of the agent does not change from one period to the next.
no matter what his endowment; thus, aggregate wealth R remains constant. It follows that the commodity market also clears. All that remains is to check that this bidding strategy is optimal. But the Euler equation (4.6) is trivially satisfied (provided that consumption is feasible), since the marginal utility of consumption is constant and $\beta(1 + \rho)/\tau = 1$. As before, transversality is obviously satisfied, so this strategy will indeed be optimal if it is always budget-feasible.

Feasibility requires
\[
c(r, y) = (1 - \beta)r + \frac{y}{1 + \rho} \leq r + \frac{\theta y}{1 + \rho},
\]
or equivalently
\[
(1 - \theta)y \leq \beta(1 + \rho)r,
\]
to hold on a set of full $\mu \otimes \lambda$-measure. This is the case rather obviously when $\theta = 1$, as well as when
\[
(1 - \theta)Q \leq \beta(1 + \rho)R
\]
and the distributions λ and μ are sufficiently concentrated around their respective means Q and R. With the aid of (6.1), this last condition can be written in the form $(1 - \beta)(1 - \theta) < \rho \beta$. □

Suppose now that no borrowing is permitted in the economy. In other words, that the credit parameter is set at $\theta = 0$. Typically, some agents will save and receive interest from the bank. Thus the money supply and prices will increase, so that the inflation parameter τ will be greater than 1. The next example illustrates this phenomenon.

Example 6.3. Let $\theta = 0$ and assume that the endowment variable Y takes on the values 0 and 1 with probability 1/2 each. Assume that the utility $u(\cdot)$ is strictly concave, so that in particular $u(1) < u(1/2) + \beta u(1)$ when the discount factor β is sufficiently close to 1.

Suppose, by way of contradiction, that there is an equilibrium in which agents do not save. Thus, since agents cannot borrow, the optimal consumption must be $c(r, y) = r$. Now with probability 1/2, agents reach the position (1, 0) starting from any position $(r, 1)$. But an agent at (1, 0) can consume 1/2 and save 1/2 the first period and then consume $(1 + \rho)/2$ at the next position $((1 + \rho)/2, Y)$. The agent thus obtains $u(1/2) + \beta u((1 + \rho)/2)$ in the first two periods while the agent who follows c gets only $u(1)$. Since both agents are in the same position at the beginning of period three, it is better to spend 1/2 the first period. We have reached a contradiction. □

Our final example shows that an SE need not exist when the utility function saturates.

Example 6.4. Assume that
\[
u(x) = \begin{cases} x, & 0 \leq x < 1, \\ 1, & x > 1. \end{cases}
\]

Let the random variable Y equal 0 with probability $\gamma \in (0, 1)$, and equal 4 with probability $1 - \gamma$. Set the interest rate ρ and the credit parameter θ equal to 1, and let the discount factor $\beta \in (0, 1)$ be arbitrary. We shall show by contradiction, that an SE cannot exist.

To get a contradiction, assume that there is an SE with bid function $c(\cdot, \cdot)$, and relative wealth distribution μ. We shall reach a contradiction after a few steps.

Step 1: $\tau < 2$. This is because $\tau = 1 + \rho - \rho \cdot Q/R = 2 - Q/R$.

Let
\[
1 + \rho' := \frac{1 + \rho}{\tau} = \frac{2}{\tau} > 1.
\]

Step 2: For all (r, y), $c(r, y) \leq 1$. It is never optimal for an agent to bid more than 1 because, if he does so, he gains nothing in immediate utility and has less money at the next stage.

Step 3: Let k be any positive number. Then from any initial real wealth r_n, an agent using the bid function $c(\cdot, \cdot)$, will reach real wealth positions in $\{k, \infty\}$ with positive probability. Indeed, on the event $\{Y_1 = Y_2 = \cdots = Y_n = 4\}$ (which has probability $(1 - \gamma)^n > 0$), we have almost surely
\[
r_n \geq (1 + \rho)^{n-1} k, \quad \forall n \geq 1 + \frac{\log k}{\log(1 + \rho')}.
\]

We shall prove (6.3) by induction. By Step 2, $c_1 = c(r_1, 4) \leq 1$. So
\[
r_2 = (1 + \rho')(r_1 - c_1) + \frac{4}{\tau} \geq (1 + \rho')(1 - 1) + 2(1 + \rho') = (1 + \rho').
\]

Now assume (6.3) holds for n and $y_n = 4$. Then $c_n = c(r_n, 4) \leq 1$ and
\[
r_{n+1} = (1 + \rho')(r_n - c_n) + \frac{4}{\tau} \geq (1 + \rho')((1 + \rho')^{n-1} - 1) + 2(1 + \rho').
\]

Hence $r_{n+1} \geq (1 + \rho')^{n+1}$. Step 4: Let $k^* = 2(1 + \rho')/\rho$. If $r_n \geq k^*$, then it follows from Step 2 that
\[
r_{n+1} \geq (1 + \rho')(r_n - 1) \geq r_n + \rho' \cdot k^* - (1 + \rho') = r_n + (1 + \rho')
\]
holds almost surely on $(r_n \geq k^*)$.

Steps 3 and 4 imply that the Markov chain (r_n) of an agent’s relative wealth positions diverges to infinity, with positive probability; thus, the chain is transient and cannot have a stationary distribution. This contradicts the invariance of μ.

7. Existence of stationary equilibrium

Most of this section is devoted to stating and proving a general existence theorem. In the final subsection we present a simpler result for the special case when the interest rate ρ is zero.

For the proof of the first theorem we shall impose the following additional assumptions:

Assumption 7.1. (a) The distribution of the random endowments is bounded from above by some $y^* \in (0, \infty)$; equivalently, $\lambda([0, y^*]) = 1$.

(b) $\inf_{x \in (0, \infty)} u'(x) > 0$.

(c) The interest rate ρ satisfies
\[
\rho < (1 - \beta)(1 - \theta).
\]

Condition (c) is equivalent to the inequality $\theta > \theta^*(\rho) := 1 - (\rho/(1 - \beta))$.

Theorem 7.1. Under Assumptions 4.1 and 7.1, there exists a stationary Markov equilibrium (SE) with inflation rate $\tau > \beta(1 + \rho)$.

Assumptions 4.1 and 7.1 will be in force until the end of Section 7.4.

Theorem 7.1 asserts, in particular, that a small enough interest rate will induce, in equilibrium, a rate of inflation τ higher than that predicted by the Fisher equation. By Theorem 5.1, such an equilibrium cannot be interior.

It seems likely that some of the conditions in Assumption 7.1 could be relaxed. However, our proof of Theorem 7.1 will use them all.
The proof will be given in a number of steps. The idea is familiar. We shall define an appropriate mapping from the set of real wealth distributions into itself, and argue that the mapping has a fixed point that corresponds to an SE.

7.1. The mapping \(\Psi \)

Let \(\Delta^+ \) be the set of probability measures \(\mu \) defined on the Borel subsets of \([0, \infty)\) that have a finite, positive mean:

\[
0 < R \equiv R(\mu) = \int_{(0, \infty)} t \mu(dt) < \infty.
\]

We regard \(\Delta^+ \) as the set of possible real wealth distributions. For \(\mu \in \Delta^+ \), let

\[
\tau \equiv \tau(\mu) = 1 + \rho - \rho \cdot \frac{Q}{R(\mu)}.
\]

In SE, this quantity \(\tau \) will be the rate of inflation. Note that \(\tau \) can never exceed \(1 + \rho \).

Now let \(\Delta^* := \{ \mu \in \Delta^+: \tau(\mu) > \beta(1 + \rho) \} \). Select a probability measure \(\mu \in \Delta^* \), and let \(c(\tau, r) = \xi(\rho, \tau)(\tau, r) = c_\tau(\tau, r) \) be the optimal bid of an agent at \((\tau, r)\) as defined in (4.3); in particular, \(c(\tau, r) \) satisfies (3.8). Next, let the random vector \((\mathcal{R}, \mathcal{Y})\) have distribution \(\mu \otimes \lambda \), and define

\[
\tilde{\mathcal{R}} \equiv \tilde{\mathcal{R}}(\mathcal{R}, \mathcal{Y}) = \tau(\mathcal{R} - c(\mathcal{R}, \mathcal{Y})) + \frac{\mathcal{Y}}{\tau},
\]

(7.1)

by analogy with (3.10) (equivalently, \(\tilde{\mathcal{R}} \) is the distribution of \(\mathcal{R} \)) corresponding to the next real wealth position of an agent who begins at \((\mathcal{R}, \mathcal{Y})\) and bids according to the rule \(c(\mathcal{R}, \mathcal{Y}) \). We now define the mapping

\[
\Psi(\mu) = \tilde{\mu}
\]

by taking the probability measure \(\tilde{\mu} \) to be the distribution of the random variable \(\tilde{\mathcal{R}} \) in (7.1). Let

\[
\tilde{\tau} \equiv \tau(\tilde{\mu}) = 1 + \rho - \frac{\rho Q}{R(\tilde{\mu})},
\]

where \(R \equiv R(\tilde{\mu}) = \int_{(0, \infty)} \tilde{\mu}(dr) \) is the mean of the probability measure \(\tilde{\mu} \).

Suppose that \(\mu \) is a fixed point of this mapping \(\Psi \). Then \(\tilde{\mu} = \mu \), and consequently \(R = \tilde{R} \) as well as \(\tilde{\tau} = \tau \). Thus the distribution of real wealth in the economy remains constant when the initial real wealth distribution is \(\mu \) and the agents use the optimal bid function \(c(\mathcal{R}, \mathcal{Y}) \). It then follows from the discussion in Section 3.3 that \((\mu, c(\mathcal{R}, \mathcal{Y}))\) is an SE.

To establish that \(\Psi \) has a fixed point, it suffices to find a nonempty compact convex set \(K \subseteq \Delta^+ \) such that \(\Psi(K) \subseteq K \) and \(\psi \) is continuous on \(K \). This is the Brouwer–Schauder–Tychonoff fixed point theorem; see Aliprantis and Border, 1999.) We now set out to find such a set \(K \).

7.2. Bounding \(\mathcal{R} \) and \(\tau \)

Let us define

\[
\mathcal{R}_* := \frac{1 - \theta}{1 + \rho} \cdot Q \quad \text{and} \quad \tau_* := \frac{(1 + \rho)(1 - \rho - \theta)}{1 - \theta},
\]

and continue to use the notation of the previous section.

Lemma 7.1. Let \(\mu \in \Delta^* \), and suppose that the random vector \((\mathcal{R}, \mathcal{Y})\) has distribution \(\mu \otimes \lambda \). Then the quantities \(\bar{\mathcal{R}} = \mathcal{R}(\tilde{\mu}) \) and \(\bar{\tau} = \tau(\tilde{\mu}) \) satisfy

\[
\infty > \bar{\mathcal{R}} \geq \mathcal{R}_*,
\]

and

\[
1 + \rho \geq \bar{\tau} \geq \tau_* > \beta(1 + \rho) > 0.
\]

Proof. Integration with respect to \(\mu \otimes \lambda \) in (7.1) gives

\[
\bar{\mathcal{R}} \leq \frac{1 + \rho}{\tau} \int_{(0, \infty)} r \mu(dr) + \frac{1}{\tau} \int_{(0, \infty)} y \lambda(dy)
\]

\[
= \frac{1 + \rho}{\tau} \cdot \mathcal{R} + \frac{1}{\tau} \cdot Q < \infty.
\]

To prove the second inequality of the first line of the lemma, first consider the quantity

\[
\bar{\mathcal{C}} := \int_{(0, \infty)} \int_{(0, \infty)} c_\tau(r, y) \mu(dr) \lambda(dy),
\]

which is the total consumption when all agents use \(c(\cdot, \cdot) \). By (3.8), we have

\[
\bar{\mathcal{C}} \leq \int_{(0, \infty)} \int_{(0, \infty)} \left(r + \frac{\theta y}{1 + \rho} \right) \mu(dr) \lambda(dy) = \mathcal{R} + \frac{\theta Q}{1 + \rho}.
\]

Thus

\[
\tilde{\mathcal{R}} = \int_{(0, \infty)} \int_{(0, \infty)} \frac{1 + \rho}{\tau} \left(r - c_\tau(r, y) \right) \mu(dr) \lambda(dy)
\]

\[
= \frac{1 + \rho}{\tau} \left(\mathcal{R} - \bar{\mathcal{C}} \right) + \frac{1 + \rho}{\tau} \left(\frac{\theta Q}{1 + \rho} \right) + \frac{Q}{\tau} = 1 - \theta \cdot Q,
\]

\[
\geq \frac{1 - \theta}{1 + \rho} \cdot Q = R_*,
\]

which establishes the second inequality. In the second row of the lemma, the first inequality is obvious; The second inequality follows from \(\bar{\mathcal{R}} \geq \mathcal{R}_* \) and

\[
\bar{\tau} = 1 + \rho - \rho \cdot \frac{Q}{\bar{\mathcal{R}}} \geq 1 + \rho - \frac{Q}{R_*} = \tau_*.
\]

The third inequality in the second row of the lemma amounts to \((1 - \beta)(1 - \theta) > \rho\), which holds by Assumption 7.1(c). The final inequality is obvious. \(\Box \)

7.3. Bounding the wealth distribution

Define the random variable \(\tilde{\mathcal{R}} \) as in (7.1), and let \(\tau \geq \tau_* \). Then by Lemma 4.2(c) and Assumption 7.1(a), we have

\[
\tilde{\mathcal{R}} \leq \frac{1}{\tau_*} \int_{(0, \infty)} \left[(1 + \rho) \left(\mathcal{R} - c_\tau(\mathcal{R}, \mathcal{Y}) \right) + y \right] + y^* \quad \text{and} \quad \tilde{\mathcal{C}} \leq \frac{1}{\tau_*} \int_{(0, \infty)} \left[(1 + \rho) \left(\mathcal{R} - c_\tau(\mathcal{R}, \mathcal{Y}) \right) + y^* \right].
\]

Define

\[
\eta^* := \sup \{ r - c_\tau(\mathcal{R}, \mathcal{Y}) : r \geq 0, \tau_* \leq \tau \leq 1 + \rho \},
\]

\[
J := \left[0, \frac{(1 + \rho) \eta^* + y^*}{\tau_*} \right].
\]

Lemma 7.2. The constant \(\eta^* \) is finite and, for every \(\mu \in \Delta^* \) such that \(\tau = \tau(\mu) \geq \tau_* \), the measure \(\tilde{\mu} \) is supported by the compact interval \(J \).

Proof. To bound \(r - c_\tau(\mathcal{R}, \mathcal{Y}) \) we can assume without loss of generality that \(r > 0 \) and, by Lemma 4.2(e), that the inequalities in (3.8) are strict. In the following calculation we set \(\xi := \inf_{x \geq 0} \mu \left(\frac{1}{\tau}(\mathcal{R} - c_\tau(\mathcal{R}, \mathcal{Y})) \right) \) and \(y = 0 \). Thus the quantity of (4.5) becomes \(\tilde{\tau} = \frac{1}{\tau_*} (r - c_\tau(\mathcal{R}, \mathcal{Y})) \) and, by Lemmas 4.3 and 4.2(c) we have

\[
\xi \leq \frac{\beta(1 + \rho)}{\tau} \cdot \mathcal{R} \quad \text{and} \quad \frac{1}{\tau_*} \cdot \mathcal{R} \leq \frac{\beta(1 + \rho)}{\tau} \cdot \mathcal{R} \leq \frac{\beta(1 + \rho)}{\tau} \cdot \mathcal{R} = \frac{\beta(1 + \rho)}{\tau} \cdot \mu \left(\frac{1}{\tau}(\mathcal{R} - c_\tau(\mathcal{R}, \mathcal{Y})) \right),
\]

(7.2)
where the random variable \tilde{Y} has distribution λ. Now $u'(c) \downarrow \xi$ as $\xi \to \infty$ and, by Lemma 7.1, $\tau_\alpha > \beta(1 + \rho)$, so for all α sufficiently large we have

$$u'(c) \leq \frac{\tau_\alpha \xi}{\beta(1 + \rho)}.$$

From Lemma 4.2(d), we obtain $c_r(\tau, 0) \to \infty$ as $r \to \infty$. Hence

$$\eta(T) := \sup \left\{ r \geq 0 : u'(c_r(\tau, 0)) \geq \frac{\tau_\alpha \xi}{\beta(1 + \rho)} \right\} < \infty$$

for all $\tau \in [\tau_\alpha, 1 + \rho]$, and (7.2) gives

$$\eta(T) \geq T = \frac{1 + \rho}{\tau} \cdot (r - c_r(\tau, 0)) \geq r - c_r(\tau, 0)$$

for r in this range. Thus

$$\eta^* \leq \sup_{\tau \in [\tau_\alpha, 1 + \rho]} \eta(T).$$

Finally, as in Proposition 3.4 of Karatzas et al. (1997), the function $\tau \mapsto c_r(\tau, 0)$ is continuous for fixed r. This fact, together with the continuity and monotonicity of $c_r(\cdot, 0)$, can be used to check that $\eta(T)$ is upper-semicontinuous. Hence,

$$\sup_{\tau \in [\tau_\alpha, 1 + \rho]} \eta(T) < \infty,$$

and the interval I is compact. The assertion that μ is supported by J follows from the calculation preceding the lemma.

7.4. Completion of the proof of Theorem 7.1

Let $K := \{ \mu \in \Delta^+ : \tau(\mu) \geq \tau_\alpha, \mu(I) = 1, R(\mu) \geq R(\mu) \}$ is a concave function of μ. Also, by Lemmas 7.1 and 7.2, we have $\Psi(K) \subseteq K$. The continuity of Ψ on K follows from Theorem 3.5 in Langen (1981). By the Brouwer-Schauder-Tychonoff Theorem, Ψ has a fixed point μ. It follows that $\mu(c_r(\cdot, \cdot))$ is an SE.

7.5. An open question

With exponential utility function $u(x) = 1 - e^{-x}$, $x \geq 0$ and endowment random variable Y that is not a.s. equal to a constant, does μ exist, at least for small enough values of $\rho > 0$? This case is not covered by Theorem 7.1, but if μ exists, it cannot be interior and we must have $\tau > \beta(1 + \rho)$ (Theorem 5.2).

7.6. The special case $\rho = 0$

If the interest rate ρ is zero, then Assumption 7.1 is not needed to prove the existence of a stationary equilibrium. We can take the credit parameter θ to be 1, thus allowing full credit to the agents.

Theorem 7.2. Suppose that $\rho = 0$, $\theta = 1$, and that the utility function $u(\cdot)$ is strictly concave and satisfies Assumption 4.4. Suppose also that the endowment variable Y has a finite second moment. Then there is a stationary equilibrium in which the price and wealth distribution remain constant.

The proof of Theorem 7.2 uses a similar result for a different model that was studied in Karatzas et al. (1994). We begin with a description of this model, which we call “Model 2”.

As in the present paper, there is in Model 2 a continuum of agents $\alpha \in I$, one nondurable commodity, flat money, and countably-many time periods $n = 1, 2, \ldots$. At the beginning of each period n, every agent α holds cash $S_{0n}(\omega) \geq 0$, but does not hold goods. There is no bank or loan market, so each agent α bids an amount $b_{0n}(\omega) \in [0, S_{0n}(\omega)]$ of cash in order to purchase goods for consumption. After bidding, agent α receives a random endowment $Y_{1n}(\omega)$ of the commodity, which is then sold in a market. The price for goods is formed as

$$p_n(\omega) = \frac{b_{0n}(\omega)}{Q_n(\omega)},$$

where

$$B_n(\omega) = \int b_{0n}(\omega) \, d\alpha, \quad Q_n(\omega) = \int Y_{1n}(\omega) \, d\alpha = Q$$

are the aggregates of the bids and endowments, respectively. The agent α then receives the quantity $X_{1n}(\omega) = n_{0n}(\omega)/p_n(\omega)$ of the commodity, gets $u(X_{1n}(\omega))$ in utility, and begins the next period with cash $S_{1n+1}(\omega) = S_{0n}(\omega) - b_{0n}(\omega) + p_n(\omega)Y_{1n}(\omega)$.

The agent seeks to maximize the expected total discounted utility

$$\mathbb{E} \left(\sum_{n=1}^{\infty} \beta^{n-1} u(X_{1n}(\omega)) \right).$$

We shall assume that the utility function $u(\cdot)$ satisfies the hypotheses of Theorem 7.2, and that the random variables $Y_{1n}(\omega)$ satisfy the assumptions made in Section 2 above.

The result that follows corresponds to Theorem 7.3 in Karatzas et al. (1994).

Lemma 7.3. There is an equilibrium for Model 2 with a constant price $p \in (0, \infty)$ and a constant wealth distribution w defined on the Borel subsets of $[0, \infty)$, and in which every agent $\alpha \in I$ bids according to a stationary plan ϵ^∞, namely, $b_{0n}(\omega) = (S_{0n}(\omega))$ for all n, α.

Suppose now $S \sim \nu$ and $Y \sim \lambda$, where "\sim" means "is distributed as". (If both X and Σ are random variables, then $X \sim \Sigma$ means that they have the same distribution.) Assume also that S and Y are independent. Then, by Theorem 7.3 (loc. cit.) we have

$$S - c(S) + pY \sim \nu.$$

Denote by μ the distribution of $S - c(S)$ and define

$$\alpha(m, y) := \epsilon(m + py) \quad \text{for} \quad m \geq 0, \quad y \geq 0.$$

We now claim that the price p, wealth distribution μ, and stationary plan α^∞ form a stationary equilibrium for the original model. To verify the claim, first observe that, if $M \sim \nu, Y \sim \lambda$, and M and Y are independent, then

$$M + pY - \alpha(m, y) = M + pY - c(M + pY) \sim S - c(S) \sim \mu.$$

Thus the distribution of wealth is preserved. Consequently, the price

$$p = \int \int a(m, y) \, d\mu(dm) \, \nu(dy) = \int \int c(s) \, \nu(ds)$$

also remains constant. It remains to be shown that the plan α^∞ is optimal for a given agent, when all other agents follow it.

Let $W(\cdot)$ be the optimal reward function for an agent playing in the equilibrium of Lemma 7.3. Then $W(\cdot)$ satisfies the Bellman equation

$$W(s) = \sup_{\alpha \in \beta(s)} \left(\begin{array}{c} u \left(\frac{b}{p} \right) + \beta \cdot \mathbb{E}W(s - b + pY) \end{array} \right).$$

The Bellman equation for an agent in the original model is

$$V(m, y) = \sup_{\alpha \in \beta(m + py)} \left(\begin{array}{c} u \left(\frac{b}{p} \right) + \beta \cdot \mathbb{E}V(m + py - b, Y) \end{array} \right).$$

It is easy to see that

$$V(m, y) = V(m', y') \quad \text{whenever} \quad m + py = m' + py'.$$
Indeed, it is not difficult to show that $V(m, y) = W(m + py)$. (One method is to verify the corresponding equality for n-day optimal returns using backward induction, and then pass to the limit as $n \to \infty$.) It is also straightforward to check that the expected total reward to an agent in Model 2 who plays c^∞ from the initial position $s = m + py$, is the same as that of an agent in the original model who plays c^∞ starting from (m, y). Since c^∞ is optimal for Model 2, it follows that c^∞ is optimal for the original model.

This completes the proof of the claim and also of Theorem 7.2.

8. Comments on representative and independent agents

The representative agent model of Karatzas et al. (2006) and the independent agents model of this paper are at two extremes. The representative agent model is far easier to analyze than the independent agents model. Both call for a modification of the Fisher equation. In the representative agent model the rate of inflation is a random variable T, and in the independent agents model of this paper are at two extremes. In this sense, the inflationary pressure is even greater for the independent-agent model than for the representative-agent model.

The following harmonic Fisher equation follows readily:

$$E\left(\frac{1}{T(Y)} \right) = \frac{1}{\beta(1 + \rho)}.$$

Consequently, the expectation $E(T(Y))$ exceeds $\beta(1 + \rho)$, as does the long run rate of inflation.

It is not clear how the random variable $T(Y)$ (inflation rate in the representative agent model) compares with τ (inflation rate in the model with independent agents)—a quantity for which we have no analytic expression. We do note, however, that under the conditions of Theorem 7.1, or with $u'(\cdot)$ strictly convex and λ a non-degenerate distribution as in Theorem 5.2, the latter dominates the harmonic mean of the former, to wit:

$$E\left(\frac{1}{T(Y)} \right) \geq \frac{1}{\tau}.$$

In this sense, the inflationary pressure is even greater for the independent-agent model than for the representative-agent model.