GENERIC INEFFICIENCY OF STOCK MARKET EQUILIBRIUM
WHEN MARKETS ARE INCOMPLETE*

J. GEANAKOPOLOS
Yale University, New Haven, CT 06520-2125, USA

M. MAGILL and M. QUINZII
University of Southern California, Los Angeles, CA 90089, USA

J. DRÈZE
CORE, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Submitted December 1987, accepted November 1988

If the asset market is incomplete, and if there are two or more consumption goods in each state of nature, then for fixed consumer preferences (of at least two agent(s)), and fixed (non-trivial) technologies for the firm(s), and for a generic assignment of initial endowments, competitive equilibrium investment decisions are constrained inefficient. An outside agency can, simply by redirecting the investment decisions of firms and by lump sum transfers to individuals before the state of nature is realized, make all consumers better off.

1. Introduction

A stock market is a mechanism by which the ownership and control of firms is determined through the trading of securities. It is on this market that many of the major risks faced by society are shared through the exchange of...

*Research support from National Science Foundation Grants SES 8607860 and SES 8709990 is gratefully acknowledged. We would also like to thank participants at the theory workshop at the University of Pennsylvania, at the IMSSS Summer Workshop (1987) at Stanford University and at the Bonn Workshop in Mathematical Economics (Bowo 88) for helpful comments. This paper is a shortened version of MRG Working paper M8735, Department of Economics, University of Southern California, October 1987.

securities and the production decisions that influence the present and future supply of resources are determined. *If the overall structure of markets is incomplete can the stock market be expected to perform its role of exchanging risks and allocating investment efficiently?* It is this question that we seek to answer.

The efficiency properties of an equilibrium depend upon the structure of the markets employed. If the markets are *incomplete* then generically equilibrium allocations are Pareto inefficient. The reason is clear: the criterion of Pareto efficiency gives the planner more freedom in allocating resources than is provided by the system of incomplete markets. The planner in essence achieves Pareto efficiency by reintroducing the missing markets. However, the important economic question is not whether a new structure with more markets can do better, but whether the existing one performs efficiently relative to the set of allocations achievable with this structure. This key observation, first made by Diamond (1967) in the context of a one-good economy, leads to the concept of *constrained efficiency*.

We study this concept in a general equilibrium model with a finite number of consumers, firms and goods in which there are two dates \(t = 0, 1 \) and uncertainty about which state of nature will occur at date 1. There is a spot market for each good in each state and hence perfect freedom to exchange goods within each state. There are security markets for the equity of each of the \(J \) firms. However, the number of firms is assumed to be less than the number of states \(J < S \), so that consumers by trading in the equity of firms have only limited ability to redistribute their income among the spot markets. In short, spot markets are complete, but security markets are incomplete. *This incompleteness of the security markets is a basic hypothesis of our model: we do not attempt to explain it.* In such a model Diamond (1967) showed that if there is only one good and if firms have multiplicative uncertainty then every equilibrium allocation is constrained efficient. In short, in such a one-good economy a stock market allocates investment efficiently.

Our object is to show that this is a fortuitous circumstance of the one-good model. *If there are two or more goods then the allocation of investment induced by the stock market is generically constrained inefficient.* The government can, by redirecting the investment decisions of firms and by offering lump sum transfers to consumers, make all consumers better off.

The qualitative change that occurs in the transition to a two-good economy has been studied in the context of examples by Diamond (1980), Loong-Zeckhauser (1982) and Stiglitz (1982). Stiglitz stressed the possibility that this is a general phenomenon. For a marginal change in the allocation of consumers’ portfolios and firms’ production decisions changes supply and demand on the spot markets and hence relative prices. When markets are *complete* the rates of substitution of agents are equalised and such a relative price change has no effect on welfare. Similarly, when there is only one good
there is no relative price effect and hence no effect on welfare. But when there
are two or more goods and markets are incomplete, agents' vectors of
marginal utilities of income are generically not collinear and such a relative
price change has an effect on welfare. It is as if a planner by foreseeing these
price changes had an additional instrument for redistributing income across
the states which is not available to the more myopic competitive system.

To exhibit this pecuniary externality as a general phenomenon we need a
concept of *equilibrium* for an economy with production in which the
structure of markets is incomplete. Since shareholders' vectors of marginal
utilities of income are not collinear, the concept of profit maximisation is, in
the case of general technology sets, ambiguous. Several criteria have been
proposed. Since we are interested in normative properties we adopt the
criterion introduced by Drèze (1974). In the one-good case this leads to
equilibria which satisfy the first-order conditions for constrained efficiency. It
will be clear from our analysis, however, that the generic inefficiency result
can be expected to hold for a much broader class of objective functions
provided that firms behave as price takers on the spot markets. It should
also be noted that the inefficiency result holds even if securities other than
the equity of firms are introduced provided the overall asset structure
remains incomplete.

Intuitive as the basic economic result may appear, establishing it in a
general equilibrium framework is technically demanding. This was already
clear from the earlier analysis of Geanakoplos and Polemarchakis (1986)
who studied the case of an exchange economy (exogenously given asset
structure). They showed that under certain conditions *for a generic choice of
utility functions and endowments all equilibrium allocations are constrained inefficient*. The basic idea that underlies their proof is that changes in
portfolio holdings lead to changes in relative prices if agents have different
marginal propensities to consume. In this paper we do not rely on differences
in the propensities to consume (and hence perturbations of the utility
functions) since changes in production alter the supplies of commodities and
thereby induce changes in relative prices. Our results thus depend only on
genericity in endowments.

In section 2 we lay out the basic stock market economy. In section 3 in
addition to existence (Theorem 1) we establish two important structural
properties of equilibria: first that the equilibria are generically smooth
functions of the endowment parameters (Theorem 2), and second that the
present value coefficients of consumers (the normalized vectors of marginal
utilities of income) are generically distinct (Proposition 3). These two results
are basic to the proofs of the two generic inefficiency results (Theorems 3, 4)
in section 4. In section 5 the nature of the inefficiency is illustrated through
an example. The proofs of the main results are given in section 6 and the
appendix.
2. The stock market economy

In this section we outline a general equilibrium model of a stock market economy in which the security markets are incomplete. As indicated above, our objective is to show that when the markets are incomplete serious questions are raised about the ability of the stock market to induce an appropriate allocation of investment. To analyse the problem in a framework that is at the same time simple but general we consider a two-period \((t=0,1)\) economy in which there is uncertainty about the state of nature at date 1.

2.1. Utility functions, technology sets and initial endowments

There are \(I \geq 1\) consumers \((i=1, \ldots, I)\), \(J \geq 1\) firms \((j=1, \ldots, J)\) and \(S \geq 1\) states of nature \((s=1, \ldots, S)\) at date 1. For convenience we include \(t=0\) as a state and write \(s=0, 1, \ldots, S\). In each state \(s\) there are \(L\) goods \((l=1, \ldots, L)\); we let \(N=L(S+1)\) denote the total number of goods, so that \(R^N\) is the basic real commodity space in the model.

Each consumer has an initial endowment of goods \(w^i=(w^i_s)_{s=0}^S \in R^N_+\), where \(w^i_s=(w^i_0)_{s=1}^S \in R^L_+\) is the vector of goods in state \(s\), and chooses a vector of consumption \(x^i=(x^i_0, x^i_1) \in R^L_+ \times R^L_+\) where \(x^i_0\) is date 0 consumption and \((x^i_1)_{l=1}^S \in R^L_+\) is the vector of date 1 consumption across the states. Without loss of generality we assume that each consumer's preference ordering over consumption bundles can be represented by a utility function \(u^i:R^N_+ \rightarrow R\). We make the following set of assumptions on each agent's utility function and endowment: the first part is used to establish existence of an equilibrium, the second part is added to analyse the generic properties of an equilibrium, the third is used to establish generic inefficiency.

Assumption A (utility functions). (1) Each consumer's utility function \(u^i:R^N_+ \rightarrow R\) is continuous, quasi-concave and strictly monotone in good 1 in each state \(s=0, \ldots, S\) and each agent's initial endowment \(w^i\) is strictly positive, \(w^i \in R^N_+\).
(2) (i) \(u^i \in C^2(R^N_+)\), \(Du^i(x) \in R^N_+ \forall x \in R^N_+\).
(ii) \(h^T D^2 u^i(x) h < 0 \forall h \neq 0\) such that \(Du^i(x) h = 0, \forall x \in R^N_+\) (strictly positive Gaussian curvature).
(iii) If \(U^i(\zeta) = \{x \in R^N_+ \mid u^i(x) \geq u^i(\zeta)\}\) then \(\overline{U^i(\zeta)} \subset R^N_+\), \(\forall \zeta \in R^N_+\).
(3) Each utility function \(u^i\) is separable in date 0 and date 1 consumption, that is, there exist utility functions \(u^i_0:R^L_+ \rightarrow R\), \(u^i_1:R^L_+ \rightarrow R\) such that \(u^i(x) = u^i_0(x_0) + u^i_1(x_1) \forall x \in R^N_+, i=1, \ldots, I\).

On the production side of the economy, each firm \(j\) is characterised by a technology set \(Y^j \subset R^N\) and the directors of the firm choose a production
plan \(y' \in Y' \). We use the standard convention for the production vector \(y' = (y_i'_s)_{s=0}^{S-1} \) where \(y'_s = (y_i'_s)_{i=1}^{I} \) is the vector of goods produced in state \(s \): if \(y_{sd} < 0 (>0) \) then good \(i \) is used in state \(s \) as an input (is produced in state \(s \) as an output). In the subsequent analysis we will often find it convenient to decompose the production activity of firm \(j \) into period 0 and period 1 components, \(y'_j = (y'_0, y'_1) = (y'_0, (y'_s)_{s=1}) \). In addition to the standard closure and convexity assumptions on the technology sets we need two additional properties to be able to analyse the generic properties of an equilibrium: the first is an appropriate parametrisation of these sets, the second is the assumption that they have smooth boundaries.

To obtain genericity results we need a natural way of parametrising the decisions of agents in the economy. The consumption–portfolio decision of consumers is naturally parametrised by the vector of initial endowments \(\omega = (w^1, \ldots, w^I) \in \mathbb{R}^N_{+} \) of the \(I \) consumers. To parametrise the production activity of each firm we assume that the production of each firm consists of two components, the endogenously chosen \(y' \in Y' \) and an exogenously given vector of outputs \(\eta' \in \mathbb{R}^N' \), so that the total production of firm \(j \) is \(y'_j + \eta'_j \). We call \(\eta' \) the initial endowment vector of firm \(j \) and let \(\eta = (\eta^1, \ldots, \eta^I) \). To obtain genericity results we parametrise the decisions of consumers and producers by initial endowment vectors \((\omega, \eta) \) in the open set \(\mathbb{R}^N_{+} \times \mathbb{R}^N_{+} \).

In order to obtain a smooth supply function we assume that the boundary \(\partial Y' \) of \(Y' \) is a smooth submanifold of a subspace \(K' \subset \mathbb{R}^N \). The introduction of the subspace \(K' \) avoids the otherwise restrictive assumption that all goods are involved in the production activity of firm \(j \). The two sets of assumptions on the technology sets of firms that we will use are the following.

Assumption B (technology sets).

1. (i) Each firm’s technology set \(Y' \subset \mathbb{R}^N \) is closed, convex and \(0 \in Y' \).
2. (ii) \((\sum_{j=1}^J w^j + \sum_{j=1}^J (Y' + \eta'')) \subset \mathbb{R}^N_{+} \) is compact.
3. (i) Let \(K' \) be a \(k_j \)-dimensional subspace of \(\mathbb{R}^N \) with \(1 \leq k_j \leq N \) for \(j = 1, \ldots, J \). \(Y' \subset K' \) is a \(k_j \)-dimensional manifold and its boundary \(\partial Y' \) is a \(\mathbb{C}^2 \) manifold with strictly positive Gaussian curvature at each point.
4. (ii) \(\eta'' \in \mathbb{R}^N_{+}, j = 1, \ldots, J \).

If we choose utility functions \((u') \), production sets \((Y') \) and a vector of initial endowments \((\omega, \eta) \), satisfying Assumptions (A, B), then we obtain an economy \(\mathcal{E} = (u', Y', \omega, \eta) \). In the analysis that follows we think of the utility functions and technology sets as being fixed and allow the parameters \((\omega, \eta) \) to be free to vary in the parameter space \(\mathbb{R}^N_{+} \).

2.2. Market structure: Spot and security markets

There are a variety of market structures that can be added to any such economy \(\mathcal{E} = (u', Y', \omega, \eta) \) to induce an allocation of resources. The classical
one is the Arrow–Debreu set of complete contingent markets and with such a market structure (competitive) equilibrium allocations are Pareto optimal. Our basic tenet is that such a market structure is essentially not observed in the real world, certainly not for the important aggregate risks to which the production activity of firms is exposed. It presupposes much too refined a system of markets.

A much more realistic market structure can be described generally as follows. There are two types of markets, spot markets for the trading of real good and financial markets for trading financial assets. A rich class of market structures can be analyzed depending on the type of financial assets introduced. In this paper we consider only one type of financial asset, namely the security or equity issued by a firm. We focus our attention on this case for several reasons. First and foremost in terms of the sheer magnitude of trade involved, equity markets are perhaps the most significant risk-sharing markets that exist in a modern economy and they are of central importance in influencing the production (investment) decisions of firms. Second, adding additional asset markets would not alter our main result, provided the resulting asset structure remains incomplete. Finally, adding additional asset markets substantially complicates the notation and our interest is in obtaining the simplest framework for proving the main result.

Consider therefore a market structure consisting of spot and equity markets. In each state $s = 0, \ldots, S$ there is a spot market for each of the L goods; let $p = (p_0, p_1) = (p_0, (p_i)_{i=1}^S)$ denote the associated vector of spot prices. There are security markets for the shares of each firm j. Implicit in the ownership share $0 \leq \theta^j \leq 1$ of firm j by agent i is the right to receive the share $\theta^j y^j_s$ of the production plan of firm j. However, since the security market is viewed as a financial market on which income is delivered rather than as a real market on which goods are delivered, we assume that what agent i receives as a result of purchasing at date 0 the proportion θ^j of firm j's shares is the income $\theta^j p \cdot y^i$ where $p \cdot y^i = (p_i y^i)_{i = 0}^S$. The price (market value) of firm j is q_j, so that the cost of purchasing θ^j is $\theta^j q_j$. Each agent i has an initial ownership share $0 \leq \delta^i \leq 1$ of firm j; he thus receives $\delta^i q_j$ from the sale of his initial shares and spends $\theta^j q_j$ for the purchase of new shares. Since we are interested in the idea that ownership also implies some control over firm j's production decision, we assume that securities cannot be short-sold ($\theta^j \geq 0$). Trading in the shares of the J firms by the I consumers thus gives rise to an $I \times J$ non-negative matrix $\theta = (\theta^j, i = 1, \ldots, I, j = 1, \ldots, J)$ each of whose columns sum to 1, $\sum_{i=1}^I \theta^j = 1, j = 1, \ldots, J$. Let $q = (q_1, \ldots, q_J)$ denote the vector of security prices, then given the market prices (p, q) the budget set of consumer i is given by

\begin{equation}
\end{equation}

1. The initial ownership shares of the agents (δ^j) are not parameters that we permit in the analysis that follows. For brevity we include only the perturbed parameters (o, η) in the budget set B'' and the description of the economy $\delta((u', Y'), o, \eta)$.
\[B'(p, q, y; \omega, \eta) = \begin{cases} \{ x \in \mathbb{R}_+^N \} & \text{there exists } \theta \in [0, 1]^J \text{ such that} \\
\begin{bmatrix} p_0(x_0 - w_0^i) - q_0 \\
p_1 \| (x_1 - w_1^i) \end{bmatrix} = W(p, q; y + \eta) \theta \} \end{cases}, \]

where \(y = (y^1, \ldots, y^J) \) and \(W \) is the \((S + 1) \times J\) matrix of security returns

\[
W(p, q, y + \eta) = \begin{bmatrix} p_0(y_0^1 + \eta_0^1) - q_1 \ldots p_0(y_0^J + \eta_0^J) - q_J \\
p_1 \| (y_1^1 + \eta_1^1) \ldots p_1 \| (y_1^J + \eta_1^J) \end{bmatrix}.
\]

For this budget set to be well-defined we need to assume that each agent correctly anticipates at date 0, the date 1 spot prices \(p_1 \) and the outputs of firms,

\[
y_1 + \eta_1 = [y_1^1 + \eta_1^1 \ldots y_1^J + \eta_1^J].
\]

The reader will object that the assumption of correct point anticipations is unrealistic: but recall that it adds strength to our inefficiency results, since biased or dispersed anticipations will not in general improve efficiency.

2.3. Present value coefficients

Consumer \(i \) seeks a consumption bundle which solves the constrained maximum problem

\[
\max_{x^i \in B'(p, q, y; \omega, \eta)} u^i(x^i), \quad i = 1, \ldots, I.
\]

This is a standard Kuhn–Tucker problem in which the \((S + 1)\) spot market expenditure constraints give rise to a vector of marginal utilities of income (Lagrange multipliers),

\[
\lambda^i = (\lambda^i_1, \ldots, \lambda^i_S), \quad i = 1, \ldots, I,
\]

across the states of nature. \(\lambda^i \) in turn induces a vector of marginal rates of substitution.

Definition 1. We call the vector of marginal rates of substitution between income at date 1 and income at date 0, \(\pi^i = (\pi^i_0)^S_{s=0} = (\lambda^i_1 / \lambda^i_0)^S_{s=0} \) the present value coefficient of consumer \(i \).

If we take \(\theta \) as fixed at its optimal level then \(\pi^i \) may be characterised more directly as follows.
Proposition 1 (present value coefficient of agent i). Let $A_{(1)}$ hold and let (\bar{x}^i, \bar{p}) satisfy
\[u'(\bar{x}^i) \geq u'(\bar{x}^i + \xi^i) \quad \text{for all } \xi^i \text{ such that } \bar{p} \cdot \xi^i \leq 0, \]
then there exists $\pi^i = (1, \pi^i_1, \ldots, \pi^i_k) \in R^{S^i+1}_+$ such that
\[u'(\bar{x}^i) \geq u'(\bar{x}^i + \xi^i) \quad \text{for all } \xi^i \text{ such that } \pi^i \cdot (\bar{p} \cdot \xi^i) \leq 0. \]
If in addition $A_{(2)}$ holds then π^i is unique.

Proof. Consider the preferred and affordable sets
\[P^i = \{ \xi^i \in R^{L(S^i+1)} \mid u'(\bar{x}^i + \xi^i) > u'(\bar{x}^i) \}, \]
\[B^i = \{ \xi^i \in R^{L(S^i+1)} \mid \bar{p} \cdot \xi^i \leq 0 \}. \]
Since $P^i \cap B^i = \emptyset$ by the standard separation theorem there exists $\nu^i \in R^{L(S^i+1)}$, $\nu^i \neq 0$ such that $\sup_{\xi^i \in P^i} \nu^i \cdot \xi^i = \inf_{\xi^i \in P^i} \nu^i \cdot \xi^i$. Since $0 \in P^i \cap B^i$
\[\sup_{\xi^i \in P^i} \nu^i \cdot \xi^i = \inf_{\xi^i \in P^i} \nu^i \cdot \xi^i. \]
(1)

Let $\bar{p}_s = (0, \ldots, \bar{p}_s, \ldots, 0), s = 0, \ldots, S$. The first half of (1) is equivalent to
\[\bar{p}_s \cdot \xi^i \leq 0, \quad s = 0, \ldots, S \Rightarrow \nu^i \cdot \xi^i \leq 0. \]
Thus there exists $\lambda^i \in R^{S^i+1}_+, \lambda^i \neq 0$, such that $\nu = \sum_{s=0}^{S} \lambda^i_s \bar{p}_s$. By the second half of (1),
\[\sum_{s=0}^{S} \lambda^i_s \bar{p}_s \cdot \xi^i \leq 0 \Rightarrow \xi^i \notin P_i. \]
The monotonicity of u' implies $\lambda^i \in R^{S^i+1}_+$. Let $\pi^i_t = (1/\lambda^i_t) \lambda^i_t$. The uniqueness of π^i_t under $A_{(2)}$ is immediate. \qed

In the analysis that follows these present value coefficients summarise the essentially new aspects of the problem of resource allocation that arise on the consumer side of the economy when markets are incomplete. We shall now show how these coefficients can be used on the production side of the economy to define an objective function for the firm in the presence of incomplete markets.

2.4. The problem of defining present value of profit

Given the prices of real goods determined on the spot markets and the
market value of each firm determined on the equity markets, column \(j \) of the matrix \(W \) gives the vector of returns across the states \(s=0, 1, \ldots, S \) obtained from the ownership of firm \(j \) when its production decision and initial endowment are \(y^j + \eta^j \). To simplify the motivation of the objective function, in this section we drop the no-short-sales restriction \(\theta^j \geq 0 \). Then the present value coefficient of agent \(i \) is a vector \(\pi^i = (1, \pi^i_1, \ldots, \pi^i_S) \in R^{S+1} \) which satisfies the no-arbitrage equation

\[
\pi^i W(p; q; y + \eta) = 0 \iff \pi^i_1 V(p_1; y_1 + \eta_1) = q - p_0(y_0 + \eta_0),
\]

where \(V(p_1; y_1 + \eta_1) = [p_1 \odot (y_1^j + \eta_1)]_{j=1}^J \) is the \(S \times J \) submatrix of period 1 returns from the \(J \) firms. When \(J \leq S \) then rank \(V \leq J \) and the dimension of the set of solutions of (2) is at least \(S - J \). If \(J < S \) then we say that the security markets are incomplete. If \(J \geq S \) and rank \(V = S \) we say the security markets are complete. When the equity markets are incomplete any two consumers will typically have different present value coefficients, so that their induced preference orderings over profit streams will differ. *When the equity markets are complete there is a unique solution \(\pi^i_1 = \beta_i \) to eq. (2); the present value coefficients of all agents coincide, \(\pi^i = (1, \beta_i) = \beta, i = 1, \ldots, I, \) and lead to a well-defined present value for each firm's stream of profit \(p \odot (y^j + \eta^j) \) which coincides with its market value \(q_j = \beta \cdot (p \odot (y^j + \eta^j)), j = 1, \ldots, J \). The objective of each firm can be unambiguously defined as maximising the present value of its stream of profit.*

The spanning literature has shown that, *even if markets are incomplete, if suitable restrictions are placed on the technology sets \(Y^j \) of firms then a well-defined objective function can be assigned to each firm* [see Eekern and Wilson (1974) and Radner (1974)]. The idea of spanning is that firms find themselves in a market environment in which no single firm can by itself alter the spanning opportunities available on the market as a whole. To express this idea let the initial endowment vector of each firm be zero so that \(\eta = (\eta^1, \ldots, \eta^J) = 0 \) and let \(\langle V(\bar{p}_1, \bar{y}_1) \rangle \) denote the subspace of \(R^S \) spanned by the columns of the matrix \(V \). Then the spanning condition requires that for any new production plan \(y^j \in Y^j \) of firm \(j \), the profit stream that it generates at date 1, \(\bar{p}_1 \odot y_1^j \), can be written as a linear combination of the *existing* profit streams \(\langle \bar{p}_1 \odot \bar{y}_1^j \rangle_{j=1}^J \) of all firms so that

\[
\bar{p}_1 \odot y_1^j \in \langle V(\bar{p}_1, \bar{y}_1) \rangle.
\]

With this assumption firm \(j \) cannot create any new spanning opportunities for investors by altering its production plan \(y^j \). In this case the market value of the firm for each alternative production plan can be evaluated in terms of the market values of all firms at the existing production plan \(\bar{y} \), and *market value maximisation* gives a well-defined objective function for the firm.
As soon as a firm can create a date 1 profit stream \(\tilde{p}_x \odot y^1 \) which does not lie in the subspace \(\langle V(\tilde{p}_1, y_1) \rangle \), investors will not in general agree on the value to be assigned to this production plan and the spanning approach breaks down. Whether the spanning condition is a reasonable approximation to what we observe on security markets is an empirical question that we shall not enter into here. Suffice it to note that spanning rules out disagreement among shareholders and to that extent is not generally observed. Furthermore, if the number of firms \((J) \) is small relative to the number of states of nature \((S) \) then the spanning assumption is likely to be very restrictive. The problem is thus to extend the definition of the objective function of a firm to a market environment in which the spanning condition no longer holds. We will examine a variety of ways in which this can be done by considering a class of objective functions which reduce to market value maximisation when the spanning condition holds.

What needs to be added to determine an objective function for firm \(j \) is a present value coefficient \(\beta^j = (1, \beta^1_j, \ldots, \beta^S_j) \) satisfying the no-arbitrage eq. (2). Thus one way of arriving at an equilibrium concept is to choose a collection of such \(\beta^j \) coefficients, one for each firm,

\[
(\beta^1, \ldots, \beta^J) \quad \text{with} \quad \beta^j W = 0, \quad j = 1, \ldots, J,
\]

and have each firm maximise the present value of its profit,

\[
\max_{y \in Y^j} \beta^j \cdot (p \odot y), \quad j = 1, \ldots, J.
\]

If we view a firm as an entity that makes decisions in the interests of its shareholders then if the present value \(\beta^j \) chosen by the directors of firm \(j \) does not reflect some kind of median or average of the present value coefficients of its shareholders then its production decision may be 'rejected' by the shareholders. In short there may be a breakdown of the relation between ownership and control. To avoid such 'instability' two criteria have been proposed. These criteria reflect the fact that in the two-period economy there are two groups of shareholders, the new \((\theta^j) \) shareholders and the original \((\delta^j) \) shareholders. Thus Drèze (1974) proposed that \(\beta^j \) should be the average present value coefficient of the firm's new shareholders,

\[
\beta^j = \sum_{r=1}^{J} \theta^j \pi^r, \quad j = 1, \ldots, J,
\]

while Grossman and Hart (1979) proposed that \(\beta^j \) be the average present value coefficient of the firm's original shareholders.
\[\beta^j = \sum_{i=1}^{I} \delta^{ij} \pi_i^j, \quad j = 1, \ldots, J. \]

The distinction between these two criteria is far from trivial and a discussion of the issues would take us beyond the confines of this paper.\(^2\) Note, however, that in a two-period economy the new shareholders criterion has better normative properties since it takes into account the interests of the shareholders who will receive its stream of profits. Indeed, in the one-good case, it is the only criterion which satisfies the first-order conditions for constrained Pareto optimality. It seems reasonable therefore in extending the analysis of the normative properties of equilibrium to the multi-good case to adopt the new as opposed to the original shareholder criterion. It should be clear more generally that if in the multi-good case the equilibrium allocations induced by the new shareholder criterion (5) are generically constrained suboptimal, then the same should be true for any criterion satisfying (3) and (4).

2.5. Shareholder constrained efficiency

If each firm adopts the new shareholder criterion outlined above, in what sense is the resulting collective set of decisions of firms made in the best interests of shareholders in the economy? Is the production sector induced to act in the best interests of the group of shareholders?

Definition 2. Let \((\bar{x}, \bar{y}, \tilde{y}; \bar{p}) = (\bar{x}^1, \ldots, \bar{x}^I, \bar{y}^1, \ldots, \bar{y}^J, \tilde{y}^1, \ldots, \tilde{y}^J; \bar{p})\) denote actions of the agents and a vector of spot prices. The vector of production plans \(y = (y^1, \ldots, y^J)\), where \(y^j \in Y^J, j = 1, \ldots, J\), is preferred at \((\bar{x}, \bar{y}, \bar{p})\) to \(\tilde{y}\) by the (new) shareholders of all firms if there exist transfers and changes in consumption

\[(\tau, \xi) = ((\tau^i, \xi^i), j = 1, \ldots, J, i = 1, \ldots, I) \in R^{IJ} \times R^N \]

such that

\[\sum_{i=1}^{I} \tau^i = 0 \quad \text{with} \quad \tau^i = 0 \quad \text{if} \quad \bar{y}^i = 0, \quad j = 1, \ldots, J, \quad (6) \]

\(^2\)Grossman and Hart came up with their criterion in attempting to resolve the difficulties that appear when the Drèze criterion is applied to an economy with three or more periods. For then the new shareholders at date 1 may differ from the new shareholders at date 0: shareholders planning to sell at date 1 are concerned with the selling price of the shares, while those who will hang on to their shares are interested in the dividends (profits) that will accrue. The criterion of Grossman and Hart focuses all attention on the original shareholders at date 0. This, however, is reasonable only if the investment decisions made at date 0 are not reversible by subsequent shareholders, an assumption that ultimately becomes untenable.
\[\tilde{p}_0 x_{0} = \sum_{j=1}^{J} [\tilde{p}_0 B^j(y^j_0 - \tilde{y}^j_0) + \tau^j c], \quad i = 1, \ldots, I, \] (7)

\[\tilde{p}_1 \quad \xi_1 = \sum_{j=1}^{J} \tilde{p}_1 \, B^j(y^j_1 - \tilde{y}^j_1), \quad i = 1, \ldots, I, \] (8)

\[u'(\tilde{x}^i + \xi^i) > u'(\tilde{x}^i), \quad i = 1, \ldots, I. \] (9)

Definition 3. Let \((\tilde{x}, \tilde{\theta}, \tilde{y}; \tilde{p})\) denote actions of the agents and a vector of spot prices. The vector of production plans \(\tilde{y}\) is **shareholder constrained efficient** at \((\tilde{x}, \tilde{\theta}, \tilde{p})\) if there does not exist another vector of production plans \(y = (y^j_1, \ldots, y^j_J)\) with \(y^j_i \in Y^j, j = 1, \ldots, J,\) which is preferred to \(\tilde{y}\) at \((\tilde{x}, \tilde{\theta}, \tilde{p})\) by the shareholders of all firms.

Remark. The idea behind this definition is that if \(\tilde{y}\) were not optimal for the shareholders then a meeting of shareholders could be convened in which those interested in changing production plans could 'buy' the votes of others to obtain unanimity for a change from \(\tilde{y}\) to some \(y\). If we restrict the change in production plans to a **single** firm, say firm \(j\), holding the production plans of all other firms fixed and setting \(\tau^j = 0, j \neq 1, j = 1, \ldots, I,\) then with the above definitions we may say that \(\tilde{y}\) is **firm \(j\) shareholder constrained efficient.** In this case the above meeting of shareholders is restricted to the shareholders of firm \(j\). This type of constrained efficiency holds with \(A_{1(1)}\). To show that the vector of production plans \(\tilde{y}\) is optimal in the broader sense of Definition 3, so that **simultaneous changes in the production decisions of all firms are permitted**, we need to ensure that no two firms \(j \neq k\) choose different present value coefficients \((\pi^j_i \neq \pi^k_i)\) for any agent \(i\). This is ensured by \(A_{1(2)}\).

Proposition 2 (optimality of shareholder present value criterion). Let \(A_{1(1)}\) hold and let \((\tilde{x}, \tilde{\theta}, \tilde{y}; \tilde{p})\) denote the actions of the agents and a vector of spot prices such that \(u'(\tilde{x}) \geq u'(\tilde{x} + \xi)\) whenever \(\tilde{p} \cdot \xi \leq 0\). Let \(\pi^j_i, i = 1, \ldots, I, j = 1, \ldots, J\) denote present value coefficients of Proposition 1 with \(\tilde{p} = \sum_{j=1}^{J} \tilde{p}^j \pi^j_i\) an average present value coefficient of firm \(j\)'s shareholders. If each firm maximises the present value of its profit,

\[\tilde{p}^j \cdot (\tilde{p} \cdot \tilde{y}^j) \geq \tilde{p}^j \cdot (\tilde{p} \cdot y^j) \quad \text{for all } y^j \in Y^j, \quad j = 1, \ldots, J, \] (10)

then \(\tilde{y}\) is **firm \(j\) shareholder constrained efficient** at \((\tilde{x}, \tilde{\theta}, \tilde{p})\) for \(j = 1, \ldots, J\). If \(A_{1(2)}\) holds then \(\tilde{y} = (y^1, \ldots, y^J)\) is shareholder constrained efficient at \((\tilde{x}, \tilde{\theta}, \tilde{p})\).

Proof. It suffices to prove the latter result. Suppose \(\tilde{y} = (y^1, \ldots, y^J)\) is not
shareholder constrained efficient, then there exist a vector of transfers and changes in consumption

\[(\tau, \bar{\xi}) = (\tau^i, \xi^i), j = 1, \ldots, J, i = 1, \ldots, I) \in \mathbb{R}^J \times \mathbb{R}^I\]

such that (6)-(9) are satisfied. Proposition 1 implies that there is a unique set of present value coefficients \(\pi^i, i = 1, \ldots, I\) such that

\[\pi^i \cdot (\bar{p} \circ \xi^i) > 0, \quad i = 1, \ldots, I. \tag{11}\]

If we multiply (7) and (8) by \(\pi^i\), substitute into (11), sum over \(i\) and use (6) we obtain

\[\sum_{i=1}^{I} \pi^i \cdot (\bar{p} \circ \xi^i) = \sum_{j=1}^{J} \bar{\beta}^j \cdot (\bar{p} \circ (y^j - \bar{\gamma}^j)) > 0,\]

which contradicts (10). \(\square\)

Remarks. If agents' indifference surfaces are not differentiable, so that the supporting hyperplanes defined by the present value coefficients of Proposition 1 are not unique then \(\bar{y}\) need not be shareholder constrained efficient [see Drèze (1974, Example 4.4)].

The assumption that each firm uses the profit maximising criterion (10) implies that each firm behaves competitively in that it takes spot prices as given and independent of its production decision. When markets are incomplete this has important consequences as we shall see in section 4.

3. Equilibrium

With the objective function (10) assigned to each firm our model becomes closed and we are led to the following concept of equilibrium for a stock market economy.

Definition 4. An equilibrium for the economy \(\mathcal{E}((u^i, Y^i), \omega, \eta)\) is a pair of actions and prices \(((\bar{x}, \bar{y}), (\bar{p}, \bar{q}, \bar{\pi}))\) such that

(i) \((\bar{x}^i, \bar{p}^i, \pi^i), \quad i = 1, \ldots, I, j = 1, \ldots, J\) satisfy

\[\bar{x}^i \in \arg\max_{x^i \in B^i(\bar{p}, \bar{q}, \omega, \eta)} u^i(x^i), \quad \left[\frac{\bar{p}_0(\bar{x}_0^i - w_0^i) - \bar{q} \bar{\delta}^i}{\bar{p}_1 \circ (\bar{x}_1^i - w_1^i)} \right] = W(\bar{p}, \bar{q}, \bar{y} + \eta) \bar{\beta}^i,\]

and \(\pi^i, j = 1, \ldots, J\) are present value coefficients for consumer \(i\) at \((\bar{x}, \bar{p})\);

(ii) \(\bar{y}^j \in \arg\max_{y^j \in Y^j} \bar{p}^j \cdot (\bar{p} \circ y^j), \quad j = 1, \ldots, J.\)
with \(\bar{\eta}^j = \sum_{i=1}^I \bar{\eta}^i \hat{p}_j \) an average present value coefficient of firm \(j \)'s shareholders;

(iii) \(\sum_{i=1}^I (x^i - w^i) = \sum_{j=1}^J (y^j + \eta^j) \);

(iv) \(\sum_{i=1}^I \bar{\eta}^i = 1, \quad j = 1, \ldots, J \).

We now establish some properties of this concept of equilibrium which besides their intrinsic interest are necessary to prove the generic inefficiency of equilibrium. The proofs of all the theorems that follow are collected in section 6 and the appendix.

Theorem 1 (existence of equilibrium). Under the assumptions \((A_{(1)}, B_{(1)})\) the economy \(E((u', Y'), (\omega, \eta)) \) has an equilibrium.

To carry out a qualitative analysis we need equilibria to be smooth functions of the parameters \((\omega, \eta)\). It is at this point that the smoothness assumptions \((A_{(2)}, B_{(2)})\) on preferences and technology are introduced. Even with these assumptions there are three types of degeneracy that can prevent an equilibrium from being a smooth function of the parameters \((\omega, \eta) \in \mathbb{R}_+^{N_d(I+J)}\). Degeneracy occurs if any of the following holds:

(a) the matrix of security returns \(V = [p_1 \cdot (y_1 + \eta_1)] \) is degenerate in that its rank is \(\rho < J \);
(b) equilibrium prices are such that for some agent \(i \) the no-short-sales constraint just begins to be binding and the portfolio choice \(\theta^i \) is not a differentiable function of the prices;
(c) the parameter value \((\omega, \eta)\) is a critical value of the projection from the equilibrium manifold onto the parameter space.

Theorem 2 below shows that the parameter values for which such non-smoothness can occur are exceptional in the sense that they form a closed set of measure zero in the parameter space \(\mathbb{R}_+^{N_d(I+J)} \).

Definition 5. We say that an equilibrium \((\bar{x}, \bar{p}, \bar{y}, \bar{q}, \bar{\pi})\) is a rank \(\rho \) equilibrium if rank \(W(\bar{p}, \bar{q}; \bar{y} + \bar{\eta}) = \rho, 1 \leq \rho \leq J \).

Theorem 2 (finiteness and full rank). Let \((u', Y')\) be fixed. Under Assumptions \((A_{(1), (2)}, B_{(1), (2)})\), if \(I + J \leq S + 1 \), then there exists an open set of full measure of parameters \(\Omega \subseteq \mathbb{R}_+^{N_d(I+J)} \) such that any economy \(E((u', Y'), (\omega, \eta)) \) with \((\omega, \eta) \in \Omega \) has a finite number of equilibria, each of full rank. Furthermore for each \((\omega, \eta) \in \Omega \) there exists a neighborhood \(N_{(\omega, \eta)} \) such that each equilibrium is a smooth function of \((\omega, \eta)\) for all \((\omega, \eta) \in N_{(\omega, \eta)}\).
Remark. A comment is in order regarding the assumption $I + J \leq S + 1$. For general technology sets (Y^i) the coefficient $\beta^j = \sum_{l=1}^{I} \theta^j l^l$ of each firm j depends non-trivially on the portfolios $(\theta^j l^l)_{l=1}^{I}$ of its shareholders. When rank $W = \rho < J$ agents' portfolio choices (θ^j) are typically indeterminate and this can lead to indeterminacy of the equilibrium. To be sure that this happens only exceptionally we need to limit the number of agents $(I + J)$ relative to the number of states $(S + 1)$. We will show in section 4 that if the technology sets are restricted to ray technologies then this assumption is not necessary, since the production decisions of the firms no longer depend on the distribution of ownership. In this case the matrix W is generically of maximal rank independent of the number of agents.

The key characteristic of equilibria with incomplete markets is that the dimension of the set of solutions of the no-arbitrage equation $\pi^I W = 0$ is $S - J > 0$. This suggests the likelihood that in equilibrium agents' present value coefficients will be distinct: the next proposition asserts that this property is generic. This result is a basic step in establishing the generic inefficiency theorem of section 4. Note that when $I + J \leq S + 1$ if we require that $I \geq 2$ then $J < S$ must hold.

Proposition 3 (distinct present value coefficients). Let the assumptions of Theorem 2 hold. If $I \geq 2$ then there exists an open set of full measure $\Omega \subset \mathbb{R}^{N(I + J)}$ such that for every economy $\mathcal{S}((a^I, Y^I), \omega, \eta)$ with $(\omega, \eta) \in \Omega$, in each shareholder equilibrium the present value coefficients of all consumers π^1, \ldots, π^I are distinct.

4. Inefficiency of equilibrium

In this section we will examine the efficiency properties of the stock market equilibrium introduced in section 3. It is clear that there are many market structures that can be adjoined to the basic production economy of section 2.1 to induce an allocation of resources and the efficiency properties of equilibrium allocations will depend upon the market structure introduced. If the market structure consists of a system of spot markets and a sufficient number of asset markets $(J \geq S)$ then equilibrium allocations are generically efficient [see Magill and Shafer (1990)]. The situation changes dramatically when asset-markets are incomplete $(J < S)$ for then equilibrium allocations are generically not even constrained efficient. This result was established by Geanakoplos and Polemarchakis (1986) for the case of an exchange economy. The object of this section is to show how this result can be extended to the case of a production economy. Note that we do not attempt to answer the important question of why asset markets are incomplete: we leave the explanation of this for subsequent research.
The basic objective behind theorems of this kind is to determine whether decentralised decision making based on prices leads to an efficient co-ordination of decisions by the agents in the economy. If a decentralised price system does not lead to an efficient co-ordination of decisions then presumably some form of government intervention is called for: this is a basic theme that underlies our analysis of equilibrium in a production economy with incomplete markets. In this paper, however, we will not attempt to explore what form such government intervention should take.

4.1. The problem of defining efficiency

Government intervention suggests the idea of a planner running the economy. If we allow the planner access to the standard feasible allocations then we arrive at the concept of Pareto efficiency. When markets are incomplete it is clear why equilibrium allocations are generically Pareto inefficient: a planner allocating resources with access to the standard feasible allocations is given much more freedom to allocate resources across states than is provided by the system of spot and financial markets. Thus, when markets are incomplete the concept of Pareto efficiency is no longer relevant: it does not allow us to determine whether the existing structure of incomplete markets is used efficiently.

What is needed is clear. The planner must only be permitted access to a constrained set of feasible allocations which mimics the opportunities that a system of spot and financial markets offers for redistributing goods across the states of nature. In the one-good case ($L=1$) the concept of constrained efficiency is immediate and is that introduced by Diamond (1967) and Drèze (1974). When there are many goods ($L \geq 2$) the problem of finding the appropriate concept is more subtle. The concept introduced by Grossman (1977) and Grossman and Hart (1979) is not the appropriate criterion for judging whether a system of incomplete markets is being used efficiently. Under their criterion, which we refer to as weak constrained efficiency, every equilibrium allocation is efficient, even one which is Pareto dominated by another and such an equilibrium is clearly not making the best use of the existing structure of markets.\(^3\)

We shall now introduce the appropriate criterion which is a generalisation

\(^3\)Weak constrained efficiency considers a restricted set of reallocations about an existing equilibrium $((\hat{x}, \hat{z}), (\hat{p}, \hat{q}, \hat{n}))$. Reallocations on the financial markets and spot markets are kept completely separate. Thus when shareholders portfolios are changed (\(d\hat{q}\)) each agent is obliged to 'consume' the bundle of commodities $\sum \hat{q}_y d\hat{q}_y$ to which the new portfolio holdings give him the right agent i is not allowed to sell this newly acquired bundle of goods on the spot markets. The reason is clear: if they allowed such newly acquired bundles induced by portfolio changes to be exchanged on the spot markets then spot prices would in general need to be changed. This is precisely the effect that weak constrained efficiency eliminates but constrained efficiency (as defined below) introduces Constrained efficiency differs in another important respect from weak constrained efficiency in that simultaneous changes in the portfolios and production plans are permitted.
of the one introduced by Stiglitz (1982) and that studied by Geanakoplos and Polemarchakis (1986) for the case of a pure exchange asset market economy. In a nutshell, a planner can determine portfolios (θ), production plans (y) and income transfers (τ) at date 0; consumption (x) is then determined through the spot markets at an appropriate market clearing price (p). More precisely,

Definition 6. A plan $((x, p), (\tau, \theta, y))$ is **constrained feasible** (or feasible for a constrained planner) if

(i) $\tau=(\tau^i, i=1, \ldots, I) \in \mathbb{R}^I$, \hspace{0.5cm} $\sum_{i=1}^I \tau^i = 0$;

(ii) $\theta^i \in [0, 1]^J$, \hspace{0.5cm} $i=1, \ldots, I$, \hspace{0.5cm} $\sum_{i=1}^I \theta^i = e$, \hspace{0.5cm} where \hspace{0.5cm} $e=(1, \ldots, 1)$;

(iii) $y^j \in Y^j$, $j=1, \ldots, J$;

(iv) the spot prices $p \in (A^{L_0+1}_{U_0+1})^{S+1}$ are such that for $i=1, \ldots, I$

$$x^i = \arg\max_{x^i \in B(p, m^i)} u'(x^i), \hspace{0.5cm} B(p, m^i) = \{x \in \mathbb{R}^N_+ \mid p \otimes x = m^i\},$$

$$m^i = p \otimes (w^i + (y + \eta)\theta^i) + \tau^i \varepsilon_0, \hspace{0.5cm} \varepsilon_0 = (1, 0, \ldots, 0) \in \mathbb{R}^{S+1},$$

and spot markets clear,

$$\sum_{i=1}^I (x^i - w^i) = \sum_{j=1}^J (y^j + \eta^j).$$

A plan $((\bar{x}, \bar{p}), (\bar{\tau}, \bar{\theta}, \bar{y}))$ is **constrained efficient** if it is constrained feasible and there does not exist a constrained feasible plan $((x, p), (\tau, \theta, y))$ such that $u'(x^i) > u'(\bar{x}^i)$, $i=1, \ldots, I$. An allocation which is not constrained efficient is called **constrained inefficient**.

4.2. First-order conditions for efficiency

Let spot prices at date 0 be normalised so that $p_{01} = 1$. Then the transfer payment τ^i can be considered as a transfer of good 1. Thus when a planner chooses a triple (τ, θ, y) this is equivalent to choosing a virtual endowment in goods,

In Geanakoplos and Polemarchakis (1986) the set of constrained feasible allocations was further limited since transfers at time zero were not allowed, that is, it was required that there be a such that $\tau^i = q (\theta^i - \bar{\theta}^i), i=1, \ldots, I.$
\[w_i = w_i' + (y + \eta) \theta_i + \tau_i e_0, \quad i = 1, \ldots, I, \]

for each consumer, where \(e_0 = (1, 0, \ldots, 0) \in \mathbb{R}^N \). Eq. (12) can be viewed as the initial endowments of an exchange economy \(\mathcal{E}(u', \omega) \) where \(\omega = (w_1', \ldots, w_I') \), for which consumption is allocated through a system of spot markets.

Definition 7. A spot market equilibrium for the virtual exchange economy \(\mathcal{E}(u', \omega) \) is a pair \((\tilde{x}, \tilde{p})\) such that

(i) \[\tilde{x}_i = \arg \max_{x_i \in \mathcal{B}(p, \omega)} u_i(x_i), \quad i = 1, \ldots, I, \]

(ii) \[\sum_{i=1}^I (\tilde{x}_i - w_i') = 0. \]

Let \(\tilde{x}'(p, m') \) denote agent \(i \)'s solution to (i) when income is \(m' \in \mathbb{R}_{+}^J \), then a spot market equilibrium price for the economy \(\mathcal{E}(u', \omega) \) satisfies

\[\sum_{i=1}^I (\tilde{x}'(p, \omega) - w_i') = 0. \]

If the economy \(\mathcal{E}(u', \omega) \) is regular at \(\omega \) then the price system \(\tilde{p}(\omega) \) is locally a differentiable function of the parameter \(\omega \).

Consider a constrained feasible plan \(((\tilde{x}, \tilde{p}), (\tau, \theta, y)) \) then \(\tilde{x}_i = \tilde{x}'(\tilde{p}, \omega) \), \(i = 1, \ldots, I \), \(\tilde{p} = \tilde{p}(\omega) \) with \(\omega = (w_1, \ldots, w_I) \) defined by (12). We want to examine the effect of a marginal change \((d\tau, d\theta, dy) \) in the plan i.e., a change satisfying

\[\sum_{i=1}^I dt_i = 0, \quad dy \in T_p \partial Y, \quad j = 1, \ldots, J, \]

\[\sum_{i=1}^I d\theta_i = 0, \quad d\theta_i \geq 0 \quad \text{if} \quad \theta_i = 0, \quad i = 1, \ldots, I, \quad j = 1, \ldots, J. \]

Such a change induces a marginal change in the virtual endowments,

\[dw_i = (y + \eta) dt_i + dy \theta_i + dr_i e_0, \quad i = 1, \ldots, I, \]

which in turn leads to a marginal change in consumption and spot prices \((d\tilde{x}, d\tilde{p}) \). The latter adjust so that

\[d\tilde{p} \cdot d\tilde{x}_i - d\tilde{p} \cdot (\tilde{x}_i - w_i') + dr_i e_0, \quad i = 1, \ldots, I. \]
The resulting change in utility for agent i is given by
\[du' = \frac{\partial u'(\tilde{x}^i)}{\partial x^i} \cdot d\tilde{x}, \quad \text{where} \quad \frac{\partial u'(\tilde{x}^i)}{\partial x^i} = \left(\frac{\partial u'(\tilde{x}^i)}{\partial x^i_{01}}, \ldots, \frac{\partial u'(\tilde{x}^i)}{\partial x^i_{SL}} \right) \in \mathbb{R}^N \]
is the gradient of u' at \tilde{x}^i. The first-order conditions for (13) imply that there exist
\[\tilde{\lambda}^i = (\tilde{\lambda}^i_0, \ldots, \tilde{\lambda}^i_L) \in \mathbb{R}^{S+1}_+ \quad \text{such that} \quad \frac{\partial u'(\tilde{x}^i)}{\partial x^i} \cdot \tilde{\lambda}^i = \tilde{p} \cdot \tilde{\rho}, \quad i = 1, \ldots, I. \]
Thus
\[du' = \tilde{\lambda}^i \cdot [\tilde{p} \cdot ((y + \eta) d\theta + dy\theta\delta) - d\tilde{p} \cdot (\tilde{x}^i - \psi^i)] + \tilde{\lambda}^i_0 \cdot d\tau^i, \quad i = 1, \ldots, I. \]

(15)

The following lemma is now evident.

Lemma. Let $((\tilde{x}, \tilde{p}, (\tau, \theta, y)))$ be a constrained feasible plan, then there exists a marginal change $(d\tau, d\theta, dy)$ satisfying (14) such that $du' > 0, i = 1, \ldots, I$, if and only if $\sum_{i=1}^I (du'/\tilde{\lambda}^i) > 0$.

Since $\tilde{\lambda}^i/\tilde{\lambda}_0^i = \pi^i$, dividing (15) by $\tilde{\lambda}_0^i$ and summing over i gives the marginal change in social welfare arising from the change $(d\tau, d\theta, dy)$,
\[\sum_{i=1}^I \frac{du'}{\tilde{\lambda}_0^i} = \sum_{i=1}^I \tilde{\pi}^i \cdot (\tilde{p} \cdot (y + \eta)) d\theta \delta + \sum_{i=1}^I \tilde{\pi}^i \cdot (\tilde{p} \cdot dy)\theta \delta \\
- \sum_{i=1}^I \tilde{\pi}^i_1 \cdot [d\tilde{p}_1 \cdot (\tilde{x}^i_1 - \psi^i_1)]. \]

(16)

The term $\sum_{i=1}^I \tilde{\pi}^i_0 d\tilde{p}_0 (\tilde{x}^i_0 - \psi^i_0)$ vanishes since $\pi^i_0 = 1$ for all i and $\sum_{i=1}^I (\tilde{x}^i_0 - \psi^i_0) = 0$. The first two terms in (16) represent the direct income effect of the change $(d\theta, dy)$, the last term is the indirect price effect.

A shareholder equilibrium $((\tilde{x}, \tilde{p}, (\tilde{\theta}, \tilde{y})), (\tilde{p}, \tilde{q}, \tilde{\pi}))$ is clearly a constrained feasible plan corresponding to $(\tau, \theta, y) = ((\delta - \tilde{\theta}) \tilde{q}, \tilde{\theta}, \tilde{y})$. Let us examine the marginal effect on social welfare arising from a marginal change $(d\tau, d\theta, dy)$ around such an equilibrium. Evaluating such a marginal change is legitimate since we prove in Proposition 5 in the appendix that the virtual endowments induced by an equilibrium are generically regular. The first-order conditions for the portfolio choice $\tilde{\theta}^i$ of agent i implies that there exist $\tilde{\rho}^i \geq 0$ such that
\[\hat{\pi} \cdot (\hat{\rho} \odot (\hat{y} + \eta')) = \hat{q} - \hat{\rho} \text{ with } \hat{\rho} = 0 \text{ if } \hat{\theta} > 0. \]

Multiplying by \(d\theta^i \) and summing over \(i \) and \(j \) gives
\[
\sum_{i=1}^{I} \hat{\pi}^i (\hat{\rho} \odot (\hat{y} + \eta)) d\theta^i = - \sum_{i=1}^{I} \sum_{j=1}^{J} \hat{\rho}^i d\theta^j \equiv - \hat{\rho} d\theta.
\]

where \(\hat{\rho} \) denotes the matrix \(\hat{\rho} = (\hat{\rho}^i) \). The first-order conditions for profit maximisation by firm \(j \) imply
\[
\sum_{i=1}^{I} \hat{\theta}^i \hat{\pi}^i \cdot (\hat{\rho} \odot dy^i) = 0 \quad \forall \ dy^i \in T_j, \partial Y^i.
\]

Thus at an equilibrium the social welfare change (16) reduces to
\[
\sum_{i=1}^{I} \frac{d\nu^i}{\hat{x}^i_0} = - \hat{\rho} d\theta - \sum_{i=1}^{I} \hat{\pi}^i \cdot [d\hat{\rho}_i \odot (\hat{x}^i_1 - w^i_1)].
\]

(17)

The first term \(- \hat{\rho} d\theta\) measures the cost of the no-short-sales constraints \(\hat{\theta}^i \geq 0 \). This term is zero in an equilibrium where \(\hat{\theta}^i > 0 \) \(\forall i, j \). The second term is the effect on welfare of a change in the equilibrium spot prices.

The price function \(\hat{p} \) is a function of \(\omega \) which is in turn a function of the planners action \((\tau, \hat{\theta}, y)\). With a slight abuse of notation we let \(\hat{p} \) also denote the composite function \((\tau, \theta, y)\rightarrow \omega \rightarrow \hat{p}\). If we make the separability assumptions \(A_{13} \) then the period 1 spot price function \(\hat{p}_1 \) depends only on \(\omega_1 \) and hence only on \((\theta, y_1) \). Let \(\partial \hat{p}_1 / \partial \theta^i \) and \(\partial \hat{p}_1 / \partial y_1^i \) denote the partial derivatives of the vector valued function \(\hat{p}_1 \) with respect to \(\theta^i \) and \(y_1^i \), respectively. These are both column vectors. Thus \(\partial \hat{p}_1 / \partial y_1^i \) denotes the \(SL \times SL \) matrix
\[
\begin{bmatrix}
\frac{\partial \hat{p}_1}{\partial y_1^i} \\
\frac{\partial \hat{p}_1}{\partial y_1^j}
\end{bmatrix}
\]

Since the price effect \(d\hat{p}_1 \) decomposes into the change induced by \(d\theta \) and the change induced by \(dy \), applying the lemma to (17) gives the following necessary conditions for constrained efficiency.

Proposition 4 (efficiency conditions). If an equilibrium \(((\hat{x}, \hat{\theta}, \hat{y}), (\hat{\rho}, \hat{q}, \hat{\pi}))\) is constrained efficient then

\[(i) \quad \sum_{i=1}^{I} \hat{\pi}^i \cdot \left[\frac{\partial \hat{p}_1}{\partial \theta^i} - \frac{\partial \hat{p}_1}{\partial k^j} \right] \odot (\hat{x}^i_1 - w^i_1) = 0, \quad j = 1, \ldots, J, \]

Where \(\hat{\pi} \) is the vector of profit shares, \(\hat{\rho} \) is the vector of risk aversion coefficients, \(\hat{q} \) is the vector of output levels, \(\hat{\theta} \) is the vector of planning variables, \(\hat{y} \) is the vector of state variables, \(\hat{p} \) is the vector of prices, \(\hat{\omega} \) is the vector of expected outcomes, \(SL \) is the state space, and \(\odot \) is the Hadamard product.
for all \(k, k' \) such that \(\tilde{v}^{ij} > 0, \tilde{v}^{ij'} > 0 \),

\[
(ii) \quad \sum_{i=1}^{I} \pi_i' \left[\left(\frac{\partial \tilde{p}_i}{\partial y_i} \right) \frac{\partial y_i}{\partial x_i} \right] = 0
\]

for all \(dy \in T_{y}, \partial Y^{j}, j = 1, \ldots, J \).

We refer to (i) as the portfolio efficiency condition and (ii) as the production efficiency condition. Two important cases where both efficiency conditions are satisfied are the following:

(a) **There is only one good in each state** \((L = 1) \). (i) and (ii) hold since the price effects vanish. Thus the first-order conditions are satisfied. Since in the case of ray technologies, the set of feasible allocations is convex, the first-order conditions are sufficient. **In this special case every equilibrium allocation is constrained efficient.** This is the original result of Diamond (1967). In the case of general technology sets studied by Drèze (1974) the set of feasible allocations is non-convex and the first-order conditions are no longer sufficient. Drèze in fact gives examples of equilibria with one good which are not constrained efficient.

(b) **The present value coefficients are all the same** \((\tilde{x}_i' = \pi_1, i = 1, \ldots, I) \). This happens if asset markets are complete \((J \geq S \) and rank \(W = S \) \) and the constraints \(\tilde{v}^{ij} \geq 0 \) are not binding. Proposition 3 asserts that when asset markets are incomplete this case will not be observed.

In addition there are two special cases where (i) and (ii) will hold.

(c) **There is no exchange at equilibrium** \((\tilde{x}_i' - \tilde{w}_i' = 0, i = 1, \ldots, I) \). In the pure exchange case this occurs if initial endowments are Pareto optimal, a situation which is not generic.

(d) **There is no production and all agents have identical income effects** (additively separable preferences across the states with the same homothetic utility function within each state). The price effects disappear in (i).

(a) and (b) suggest the possibility that if there are at least two goods in each state \((L \geq 2) \) and if markets are incomplete \((J < S) \) then equilibria are generically constrained inefficient. In the case of an economy without production \((Y^{j} = \{0\}, j = 1, \ldots, J) \) Geanakoplos and Polemarchakis (1986) have shown that this is indeed true. In order to eliminate case (d) the genericity is with respect to utility functions as well as endowments. Our object there is to extend the result to the case of an economy with production: in particular we will show that the production efficiency condition (ii) is generically not satisfied, the genericity being with respect to the endowments \((\epsilon, \eta) \). Thus even if portfolios were efficiently allocated, it is unlikely that production decisions are efficient.
The general message that lies behind the inefficiency theorems that we prove in the next section seems clear. A modern corporation serves three constituencies, its shareholders, its employees and the consumers. In this paper we have not taken into account the responsibility of a corporation to its employees.\footnote{The model can be extended to include the interests of employees by having consumers and firms choose labor contracts in addition to their consumption-portfolio and production plans [see Drèze (1983, 1984)].} The firm thus serves shareholders by distributing profits and consumers by producing commodities purchasable on the spot markets. By eq. (16), a change in its production plan \(dy^i\) affects their welfare via two terms,

\[
\sum_{s=0}^{S} \sum_{i=1}^{I} \theta^i_r \bar{x}^i_s \beta^i_s \, dy^i_s + \sum_{s=0}^{S} \, d\beta^i_s \sum_{i=1}^{I} \bar{x}^i_s (\bar{x}^i_s - w^i_s).
\]

When a firm adopts the criterion (10) the welfare of shareholders is correctly taken into account, so that the first term vanishes. If the system of markets ensures that the \(\bar{x}^i\) coefficients of agents are equalised (complete markets) then the second term automatically vanishes and the firm serves its two constituencies (at least locally) optimally. When markets are incomplete the interests of the two constituencies are in general in conflict: the theorems below show that the two terms cannot in general be made to vanish simultaneously. If a firm is to act according to some social welfare criterion then it must strike a balance between the interests of shareholders and consumers. This suggests the need to modify the criterion of the firm to suitably take into account the interests of consumers (and more generally of employees) – a result perhaps achievable by some form of government intervention.

From a policy point of view (i.e., should the government intervene or not) the significance of the inefficiency theorems which follow depends upon the magnitude of the distortions which they assert are generically present at an equilibrium. We do not attempt to provide estimates of these magnitudes even though the analysis makes clear how such estimates can be calculated.

4.3. Inefficiency of equilibrium

We give two polar conditions on the technology sets \((Y^i)\) which imply that at an equilibrium the production efficiency condition (ii) is generically violated. The first requires that for some firm \(j\) the dimension of its production set \(Y^j\) be \(L(S+1)\): this means that the firm uses as an input or produces as an output each of the \(L(S+1)\) commodities. From a technical point of view this assumption is similar in spirit to the requirement that an agent have a possible endowment of each good.

Theorem 3 (inefficiency). If the assumptions (i) \((A_{(1)-(3)}), B_{(1)-(2)}\), (ii) \(L \geq 2\);
(iii) $I \geq 2$; (iv) $I + J \leq S + 1$; (v) $K_j = R^N$ for some $j \in \{1, \ldots, J\}$, are satisfied, then there exists an open set of full measure $\Omega^* \subset R^{N(I+J)}$ such that for every $(\omega, \eta) \in \Omega^*$ each equilibrium is constrained inefficient.

When $K_j = R^N$ firm j can completely control its date 1 production vector y_1^j by suitably changing its production decision y_0^j at date 0. The polar case is to assume that K_j is a subspace of R^N generated by the requirement that the composition of date 1 production y_1^j is fixed and only its scale can be influenced by changing the date 0 production decision y_0^j. This leads to the following concept which reduces to the multiplicative uncertainty of Diamond (1967) when $L = 1$.

Definition 8. Firm j has a ray technology set if there exists a non-zero vector of date 1 commodities (the ray) $\eta_1^j \in R^{SL}$ and a function $h^j : R^L \to R$ such that

$$Y^j = \{(y_0^j, y_1^j) \in R^L \times R^{LS} | y_1^j = h^j(y_0^j)\eta_1^j\}.$$

In all generality arguments of the paper we need a parameter of dimension $L(S + 1)$ for each firm to perturb its supply function out of non-generic situations. Provided parameters are introduced which permit sufficient controllability of the supply functions, the particular parametrisation used is not of importance in our analysis. With a general technology set the simplest way to perturb Y^j is by introducing an additive parameter $(Y^j + \eta^j)$. When Y^j has the additional structure of being a ray technology set it is natural to replace the additive parameter at date 1 by the ray parameter η_1^j in Definition 8, leaving the date 0 parameter η_0^j to enter additively as before. We will follow this convention in all cases where ray technology sets are introduced.

Theorem 4 (inefficiency). If the assumptions (i) $(A(1) - (3), B(1) - (3))$; (ii) $L \geq 2$; (iii) $I \geq 2$; (iv) $I + J \leq S + 1$; (v) for some $j \in \{1, \ldots, J\}$ firm j has a ray technology set, are satisfied, then there exists an open set of full measure $\Omega^{**} \subset R^{N(I+J)}$ such that for every $(\omega, \eta) \in \Omega^{**}$ each equilibrium is constrained inefficient. Furthermore if all firms have ray technology sets then the result holds without assumption (iv).

Remark. When all firms have ray technology sets the assumption $I + J \leq S + 1$ can be dropped because the objective function of each firm does not depend on the distribution of its ownership among its shareholders; thus indeterminacy in the portfolios (θ^j) of the agents does not translate into indeterminacy of the equilibrium. The second result in Theorem 4 is important since it shows that the inefficiency result does not depend on the upper bound on the number of agents.
5. Example

The simplest class of economies in which the production inefficiencies of the previous section can be explored are those in which production activity consists of using a single input (investment) at date 0 and producing outputs at date 1. In such an economy there are two causes of production inefficiency: inappropriate use of inputs, i.e., under- or overinvestment at date 0 and inappropriate production of outputs, i.e., production of outputs in the wrong proportions across the states at date 1. We shall consider an economy in which only the former type of inefficiency can arise by assuming that there is only one input at date 0 and that the production sector consists of a single firm with a ray technology set.

The basic data of the economy are as follows. There are two consumers \((I = 2) \), one firm \((J = 1) \) and two states at date 1 \((S = 2) \). There is one good (the input) at date 0 and the two outputs \((L = 2) \) in each state at date 1. The characteristics of the two consumers (called \(\alpha \) and \(\beta \)) are given by separable utility functions

\[
u_i(x') = u_0^i(x_0^i) + \sum_{s=1,2} \rho_s u_1^i(x_s^i)
\]

and endowments \(w_i, i = \alpha, \beta \) with \(\rho_1 = \rho_2 = \frac{1}{2} \),

\[
u_0^\alpha(x_0) = \left(1 + \frac{b}{4}\right) \log x_0, \quad u_0^\beta(x_0) = (x_{s1} x_{s2})^b,
\]

\[
u_0^\beta(x_0) = \left(1 + \frac{b}{a}\right) \log x_0, \quad u_0^\alpha(x_0) = \log x_{s1} + \log x_{s2}, \quad a > 0, \quad b > 0
\]

\[w^\alpha = (3, (0, 2b-a), (0, 1)), \quad w^\beta = (1, (0, a), (0, 1)), \quad 2b - a > 0.
\]

Since \(u_1^\alpha = 2 \log u_1^\beta \), agent \(\beta \) is more risk averse than agent \(\alpha \). As we shall see, this induces agent \(\alpha \) to become sole owner of the firm. Thus we can think of agent \(\alpha \) as the entrepreneur and agent \(\beta \) as the worker. We assume that the firm has a ray technology set with constant returns to scale \(h(y_0) = y_0 \), \(\eta_1 = ((b, 0), (1, 0)) \). Equilibrium \(((\bar{x}, \bar{y}), (\bar{p}, \bar{q}, \bar{\pi})) \) is given by

\[
\bar{x}^\alpha = \left(1, \left(2b - \frac{a}{2}, 2b - \frac{a}{2}\right), \left(\frac{3}{2}, \frac{3}{2}\right)\right), \quad \bar{x}^\beta = \left(1, \left(\frac{a}{2}, \frac{a}{2}\right), \left(\frac{1}{2}, \frac{1}{2}\right)\right),
\]

\[
\bar{\varphi}^\alpha = 1, \quad \bar{\varphi}^\beta = 0, \quad \bar{y} = (-2, (2b, 0), (2, 0)),
\]
\[\bar{\pi} = \left(1, \left(\frac{1}{2}, \frac{y_0}{2} \right) \right), \quad \bar{q} = 0, \quad \bar{\pi}^* = \left(1, \frac{1}{1+b} \right), \]

\[\bar{\pi}^\theta = \left(1, \frac{a}{a+b} \right). \]

Note that
\[\bar{\pi}^* - \bar{\pi}^\theta = \frac{a}{2} = - (\bar{\pi}^* - \bar{\pi}^\theta), \quad \frac{d\pi^*}{dy_0} = \frac{1}{2}, \quad s = 1, 2, \]

\[\bar{\pi}^* - \bar{\pi}^\theta = \frac{1}{2} = - (\bar{\pi}^* - \bar{\pi}^\theta). \]

and that \(\Theta^* = 1, \Theta^\theta = 0 \) are also the \textit{unconstrained} optimal choices of \(\alpha \) and \(\beta \).

Thus the expression for the social welfare change (17) becomes
\[
\frac{d\pi^*}{\lambda^*} + \frac{d\pi^\theta}{\lambda^\theta} = - dp_{12}(\bar{\pi}^* - \bar{\pi}^\theta) - dp_{22}(\bar{\pi}^* - \bar{\pi}^\theta) = - dy_0, k(a - b) = - k dy_0 A(a, b), \quad (17')
\]

where
\[
k = \frac{1}{4(1+b)(a+b)} > 0, \quad A(a, b) = (a - b)(a - 1).
\]

Thus \(dy_0 A(a, b) < 0 \) leads to a marginal gain in social welfare.

The parameter space \(P = \{(a, b) \in \mathbb{R}^+_1 + | 2b - a > 0 \} \) is thus partitioned into four disjoint open sets \(A(a, b) \leq 0 \) in which equilibrium is constrained inefficient, two of overinvestment \((a > b, a > 1) \) and \((a < b, a < 1) \) and two of underinvestment \((a < b, a > 1) \) and \((a > b, a < 1) \), and two closed sets of measure zero \(A(a, b) = 0 \) in which equilibrium satisfies the first-order conditions for constrained efficiency \((a = b \) and \(a = 1) \). When \(a = 1 \), since \(\bar{\pi}^* = \bar{\pi}^\theta \), the equilibrium is a Pareto optimum.

How do we explain the welfare improving change in investment \(dy_0 \) that a planner can undertake for a given economy \((a, b) \in P \)? A marginal change in investment always helps one agent and hurts the other. Thus determining the sign of \(dy_0 \) which leads to a welfare improvement amounts to determining which agent stands to obtain the largest net gain from a change in investment. Reducing (increasing) investment raises (lowers) the price of good
I relative to good 2 in each state and it is good 1 that the entrepreneur α sells (worker β buys): thus reducing (increasing) investment helps the entrepreneur (worker). If $a\neq 1$ the two terms in (17) have the opposite sign. Thus if the gain to α exceeds the loss to β in state 1 then the converse is true in state 2. The sign of $a-b$ determines which of these two terms dominates and hence which agent should be helped. Thus if $a>1$ then the gain to α exceeds the loss to β in state 1 and if $a>b$ ($a<b$) this term dominates (is dominated by) the net gain to β in state 2. Thus social welfare is improved by helping the entrepreneur (the worker), namely by reducing (increasing) investment.

6. Proofs

6.1. Proof of Theorem 1

In view of the short sales constraints the proof can be reduced to an application of Debreu's (1952) social equilibrium existence theorem [see the original working paper (1987) for more details].

6.2. Proof of Theorem 2

This theorem is a technical result which ensures that for all but an exceptional set of parameter values equilibria are smooth functions of the parameters. The result is important: the proofs of all the theorems that follow are based upon it. For brevity we have been asked to omit it. A complete proof is in the original working paper (1987); here we provide only an outline. The idea is to employ a Transversality argument to construct an open set of full measure Ω in the space of parameters R^{4L+1} such that none of the three degeneracies (a)-(c) (see p. 126) can occur.

Step 1. We first introduce a procedure for handling the non-smoothness created by the short sales constraints. Consider an artificial portfolio choice θ^*_A arising when agent i is not permitted to invest in a subset of firms indicated by A and is unconstrained in his investment in the remaining firms. Let A denote the set of all subsets of pairs $(i,j)\in\{1,\ldots,I\}\times\{1,\ldots,J\}$ (including the empty set \emptyset) such that $A\in A$ implies that for each $j\in\{1,\ldots,J\}$ there exists $i\in\{1,\ldots,I\}$ such that $(i,j)\notin A$ (for each firm j, some consumer i must be allowed to invest in firm j). The set $\{j|(i,j)\notin A\}$ is the set of firms that consumer i is forbidden to invest in. Let $A\to\theta^*_A$ denote a map defined on A with values in R^d such that $\theta^*_A=0$ if $(i,j)\notin A$. Let $\theta^*_A>0$ mean $\theta^*_A>0$ for all $(i,j)\notin A$. We place no short sales constraints on the portfolios θ^*_A other than those implied by A. Define the A-restricted budget set for consumer i by
An A-equilibrium for the economy $\mathcal{E}(\mathcal{U}, Y^i; \omega, \eta)$, for $A \in \mathcal{A}$, is a pair of actions and prices $((\tilde{x}_A, \tilde{\theta}_A, \tilde{y}_A), (\tilde{p}, \tilde{q}, \tilde{\pi}_A))$ such that

(i) $(\tilde{x}_A, \tilde{\theta}_A, \tilde{y}_A), i = 1, \ldots, I$, satisfy (i) in Definition 4 with the budget set

$$B_i(p, q, y; \omega, \eta) = \left\{ x \in \mathbb{R}^N_+ \left| \begin{array}{c} p_0(x_0 - w_0) - q\delta^\top \\ p_1 \Box (x_1 - w_1) \end{array} \right. = W(p, q; y + \eta)\theta_i \right\},$$

(ii) $\tilde{\eta}_A = \arg\max_{p \in Y} \tilde{p}^\top \tilde{y}_A$, with

$$\tilde{\eta}_A = \sum_{i=1}^I \tilde{\theta}_A \tilde{x}_A,$$

(iii) $\sum_{i=1}^I (\tilde{\epsilon}_A - w^i) = \sum_{j=1}^J (\tilde{y}_A + \eta_j),$

(iv) $\sum_{i=1}^I \tilde{\theta}_A = 1, \quad j = 1, \ldots, J.$

An A-equilibrium is a positive (non-negative) A-equilibrium if $\theta_i > 0$ ($\theta_i \geq 0$, $i = 1, \ldots, I$).

If $\zeta = (\tilde{x}, \tilde{\theta}, \tilde{y}, (\tilde{p}, \tilde{q}, \tilde{\pi}))$ is an equilibrium then there exists $A \in \mathcal{A}$ such that ζ is a positive A-equilibrium. It suffices to let $A = \{(i, j) | \tilde{\theta}_A = 0\}$. An equilibrium for which the constraints $\theta_j \geq 0$ begin to be binding for some (i, j) is an equilibrium for which non-differentiability occurs. For such an equilibrium there exist sets A and \mathcal{A} with $A \subset \mathcal{A}$ such that ζ is a non-negative A-equilibrium and a positive \mathcal{A}-equilibrium.

Step 2. Parameter values (ω, η) for which there exist equilibria in which the rank of the returns matrix W is $\rho < J$ create difficulties since θ_i is not well-defined. By a technique similar to that introduced by Magill and Shafer (1989) we write out equations characterizing equilibria of all possible ranks $\rho \leq J$ and show that with the assumption $I + J \leq S + 1$ equilibria of rank $\rho < J$ are exceptional. In an A-equilibrium for which the rank of W is $\rho < J$ there is a permutation σ of $1, \ldots, J$ such that if W_σ is the matrix obtained from W by permuting the columns according to σ then the first ρ columns $[W_{\sigma}^1, \ldots, W_{\sigma}^\rho]$ of W_σ are linearly independent. Thus there is a $\rho \times J - \rho$ matrix E of extra variables that solve the equations

$$W_\sigma^j = \sum_{k=1}^\rho E_k W_{\sigma}^k, \quad j = 1, \ldots, J - \rho.$$
The choice of θ_A is equivalent to the choice of a portfolio $\gamma_{A,\rho,\sigma}^I$ in the first ρ firms of the permutation σ. While there may be as many as $(J - \rho)$ dimensions of θ_A that generate a given income stream $m^I \in \mathbb{R}^{S+1}$, there is a unique $\gamma_{A,\rho,\sigma}^I$ generating m^I. Thus $\gamma_{A,\rho,\sigma}^I$ is well-defined. We write out equations characterising such rank $\rho < J$ equilibria and show that with the assumption $I + J \leq S + 1$ the number of independent equations exceeds the number of unknowns. [Note that $\rho(J - \rho) + I(J - \rho) < J(J - \rho) + I(J - \rho) \leq (S + 1)(J - \rho)$.] Thus by a Transversality argument similar to that in Step 4 below we conclude that the set of parameter values for which rank $\rho < J$ equilibria can occur is a closed set \mathcal{N} of measure zero in $\mathbb{R}^{N(I + J)}$. (This argument is rather long and needs to be done with care.)

Step 3. For each $A \in \mathcal{A}$ consider the open set

$$A_A = \{(p, q, y, \omega, \eta) \in \Gamma \times R^J \times R^N \times U \mid \text{rank } W = J\},$$

where

$$\Gamma = \{(A_{+}^{L-1})^{S+1}, A_{+}^{L-1} = \{(v_1, \ldots, v_L) \in R_{++}^L \mid v_1 = 1\}, U = R_{++}^{N(I+J)} \setminus \mathcal{N}\}.$$

Let $(f_A^I, \tilde{t}_A, z_A^I): A_A \rightarrow \mathbb{R}^N \times R^J \times A_{+}^S$ denote consumer i's consumption-portfolio decision maximising utility u^I over the budget set B_A and define the supply function of firm j,

$$\tilde{g}^I: \Gamma \times A_{+}^S \rightarrow \mathbb{R}^N \text{ by } \tilde{g}^I(p, \beta^I) = \arg\max_{y^I \in \mathcal{Y}_j} \beta^I \cdot (p \odot y^I), \quad j = 1, \ldots, J.$$

A standard argument (using the positive Gaussian curvature) shows that these are \mathcal{G}^1 functions. Since Walras law holds for each state we can eliminate the market clearing equation for good 1 in each state. For any $x \in \mathbb{R}^{L(S+1)}$, let $\tilde{x} = (x_{si}, i \geq 2, s = 0, 1, \ldots, S) \in \mathbb{R}^{(I-1)(S+1)}$ denote the truncation of x. If $z = (p, q, y, \omega, \eta)$ then for each $A \in \mathcal{A}$ the equations for full-rank A-equilibria are given by

(i) \[\sum_{i=1}^I (\tilde{f}^I_A(z) - \tilde{w}^I) - \sum_{j=1}^J (\tilde{g}^I(p, \tilde{\beta}^I_A(z)) - \eta^I) = 0, \]

(ii) \[\tilde{g}^I\left(p, \sum_{i=1}^I \tilde{f}^I_A(z) \tilde{t}^I_A(z)\right) - y^I = 0, \quad j = 1, \ldots, J, \quad (18) \]

(iii) \[\sum_{i=1}^I \tilde{\beta}^I_A(z) - e = 0, \]

where $e = (1, \ldots, 1) \in R^I$. We may write the system of equations (18) as
where $F_A : A \to M = R^{(L-1)(S+1)} \times R^{N_j} \times R^I$. For each $A \in \mathcal{A}$ let A' be a set of pairs (i,j) such that $A' \cup A \in \mathcal{A}$, $A' \cap A = \emptyset$ and $A' \neq \emptyset$. Since every full-rank equilibrium is a positive A-equilibrium for some $A \in \mathcal{A}$ we can find equilibria at which some agent’s portfolio is not differentiable by solving the system of equations

$$H_{A,A'}(z) = (F_A(z), (\tilde{Y}_i^j(z), (i,j) \in A')) = 0,$$

where $H_{A,A'} : A' \to M \times R^{\mathcal{A}}$. We show that $H_{A,A'} \not\equiv 0$, and conclude by a Transversality argument similar to that in Step 4 below that the set of parameter values for which (19) has a solution is a closed of measure zero $\mathcal{N}_{A,A'}$ in U. Let $U' = U \setminus \mathcal{N}_{A}$ where $\mathcal{N}_{A} = \bigcup_{A \in \mathcal{A}} \mathcal{N}_{A,A'}$. Then $(\omega, \eta) \in U'$ implies neither of the degeneracies (a) nor (b) (see p. 126) can occur.

Step 4. We eliminate the critical parameter values (c). Let

$$A' = \left\{ (p, q, y, \omega, \eta) \in \Gamma \times R^J \times R^{JN} \times U \left| \begin{array}{c}
\text{rank } W = J \\
\tilde{a}_A > 0
\end{array} \right. \right\},$$

where $\tilde{a}_A > 0$ means $\tilde{a}_i > 0$, $i = 1, \ldots, I$. Since $F_A \not\equiv 0$, $F_A^{-1}(0)$ is a manifold of dimension $N(I+J)$. The natural projection $\phi : F_A^{-1} \to U'$ is proper. By Sard’s theorem the set of critical values of ϕ is a set \mathcal{N}_A of measure zero in U' which is closed since ϕ is proper. Letting $\Omega_A = U' \setminus \mathcal{N}_A$ and $\Omega = \bigcap_{A \in \mathcal{A}} \Omega_A$ completes the proof.

6.3. Proof of Proposition 3

The result will be proved if we show that generically A-restricted equilibria have distinct π_i^A, \ldots, π_i^A for each $A \in \mathcal{A}$. Let A be the domain defined by

$$A = \left\{ z = (p, q, y, \omega, \eta) \in \Gamma \times R^J \times R^{JN} \times \Omega \left| \begin{array}{c}
\text{rank } W(z) = J \\
\tilde{a}_A(z) > 0
\end{array} \right. \right\},$$

where Ω is the open set in Theorem 2. It suffices to show that for any pair of consumers $i, k \in \{1, \ldots, I\}$, $i \neq k$ generically $\pi_i^A \neq \pi_k^A$ or that generically the system of equations

$$H_A(z) = (F_A(z), G_A(z)) = 0$$

(20)
has no solution where $F_A; A_A \rightarrow M$ is defined by (18), $G_A; A_A \rightarrow R^S$ is given by $G_A(z)=\pi_A(z)-\pi_A(z)$ and $H_A; A_A \rightarrow M \times R^S$.

In (18') for fixed (ω, η) the number of independent equations $(\dim \mathcal{M})$ equals the number of independent unknowns: we want to show that adding the S equations $G_A=0$ makes the number of independent equations exceed the number of unknowns. However, we cannot show that rank $D_x H_A=(\dim \mathcal{M} + S$. Since $J < S$ we can show that rank $D_x H_A \geq \dim \mathcal{M} + (S-J)$ and by the following lemma this will be sufficient. For a proof see Corollary 1, Magill and Shaffer (1990).

Lemma 1. Let X be a manifold and $\phi: X \rightarrow R^n$ a C^1 function. If rank $D_x \phi \geq r$ for all $x \in \phi^{-1}(0)$ then there exist submanifolds $M_x \subset X$, dim $M_x=\dim X-r, x=1, \ldots, m$ such that $\phi^{-1}(0) \subset \bigcup_{x=1}^{m} M_x$.

Since rank $V(z)=J$ for all $x \in A_A$ it follows that

$$\dim V(z)=S-J, V(z)=\{\beta_1 \in R^S|\beta_1 V(z)=0\}, \quad \forall z \in A_A.$$

Consider any $\tilde{z} \in H^{-1}(0)$ we want to show that rank $D_x H_A(\tilde{z})=\dim \mathcal{M} + (S-J)$, where $\tilde{z}=(\tilde{p}, \tilde{q}, \tilde{y}, \tilde{\eta}, \tilde{\eta})$. Pick any $d \tau \in V(\tilde{z})$. We show that there exists $dz=(0,0,0,dw,0)$ such that $D_x H_A(\tilde{z}) dz=(0,d \tau)$. Let $\tilde{\xi} \in R^2_{S,J}$ be defined by $D_x u^t(\tilde{\xi}) \equiv \tilde{\xi} \circ \tilde{u}$ and let $d \xi=\tilde{\xi}(0,d \tau)$. We want to show that there exists $dx' \in R$ such that

$$D_x u^t(\tilde{x}+dx')=(\tilde{\xi}+d \xi') \circ \tilde{u}. \tag{21}$$

Since by $A_{(2)}$ the indifference surfaces of u^t have strictly positive Gaussian curvature for all $x' \in R^n_{S,J}$ it follows from a theorem in [Mas-Colell (1985, p. 80)] that we may without loss of generality assume that $D^2_x u^t(\tilde{x}')$ is negative definite. But then there exists dx' satisfying (21). Let us now note that if we let $dw=dx'$, if (w^t+dw^t) is agent i's endowment then $(\tilde{x}'+dx', \tilde{\xi}, \tilde{\xi}+d \xi')$ is the solution of his utility maximising problem. This follows at once from the fact that first (21) holds, second the budget equations are satisfied with $\tilde{\xi}$ since $p \circ d x'=p \circ dw'$ and third $(\tilde{x}+d \xi') W'(\tilde{z})=0$ for $(i, j) \notin A$, since $d \tau \in V(\tilde{z})$. Since the change dw' leaves $\tilde{\xi}$ and F_A unchanged and since in the proof of Theorem 2 we have already shown that rank $D_x F_A=\dim \mathcal{M}$, it follows that rank $D_x H_A(\tilde{z})=\dim \mathcal{M} + (S-J)$. By Lemma 1 there exist submanifolds $M_x \subset A_A, x=1, \ldots, m$ such that $H_{A}^{-1}(0) \subset \bigcup_{x=1}^{m} M_x$. Consider the natural projection $\phi: M_x \rightarrow R^{N(J+J)}$. ϕ is proper. By Sard's theorem and the properness of ϕ the set Ω^t_A of regular values of ϕ is an open set of full measure in $R^{N(J+J)}$. Since by Lemma 1 $dim M_x=dim \Omega^{t}_A=-(S-J)$, $\phi^{-1}(0,0) \in \Omega^t_A$. Let $\Omega^{t}_{A,k}=\bigcap_{A \in \mathcal{A}} \bigcap_{x=1}^{m} \Omega^t_A$, then $H_A(p,q,y,\omega, \eta)=0$ has no solution for all $(\omega, \eta) \in \Omega^{t}_{A,k}$, for all $A \in \mathcal{A}$.
6.4. Proof of Theorem 3

We show that the equations of equilibrium and the production efficiency equation (ii) of Proposition 4 are generically not simultaneously satisfied, so that equilibrium and production efficiency are incompatible. Let \((\bar{x}, \bar{y}, (\bar{p}, \bar{q}, \bar{x}))\) be an equilibrium and let \(\bar{w} = \bar{w}' + (\bar{y} + \eta) \bar{\theta}'\), \(\omega = (\bar{\pi}^1, \ldots, \bar{\pi}^I)\) denote the induced virtual endowment for the economy \(\mathcal{E}((u'), \omega)\). By Proposition 5 (appendix) there exists an open set of full measure \(\Omega'' \subset R_{x+}^{N(I+J)}\) such that if \((\omega, \eta) \in \Omega''\) then the equilibria of \(\mathcal{E}((u'), Y'), \omega, \eta)\) induce virtual endowments \(\bar{\omega}\) for which the economy \(\mathcal{E}((u'), \bar{\omega})\) is regular. Thus if \(\bar{p}(\omega)\) is a spot market equilibrium for \(\mathcal{E}((u', \bar{\omega}))\), namely a solution of \(\bar{Z}(p, \bar{\omega}) = \sum_{j=1}^I (\bar{x}^j(p, p \odot \bar{w}^j) - \bar{w}^j) = 0\), then \(\bar{p}\) is differentiable at \(\bar{\omega}\). Thus \(\partial \bar{p}_j / \partial y^j_1\) is well-defined.

Step 1 By Assumption (v) \(\partial Y^J\) is an \((N-1)\)-dimensional manifold. Its tangent space at \(\bar{y}'\), \(T_{\bar{y}'} \partial Y^J\) is thus an \((N-1)\)-dimensional hyperplane in \(R^N\). Since firm \(j\) is maximizing profit \(\bar{p}^j_1(p \odot y')\) over \(Y'\) at \(\bar{y}'\), this hyperplane is orthogonal to the price vector \((\bar{p}_{10}, \bar{p}_1, \bar{p}_1, \ldots, \bar{p}_j, \bar{p}_j)\gg 0\). Thus its projection onto the date 1 commodity space \(R^{L_S}\) is surjective. In view of this the efficiency condition (ii) can be written as

\[
\left< \frac{\partial \bar{p}_1}{\partial y^j_1} \right> \Pi_{i=1}^I \bar{x}_i^j \odot (\bar{x}'_1 - \bar{w}'_1) = 0 \quad \forall \, dy^j_1 \in R^{L_S},
\]

(22)

where \(\langle \ldots \rangle\) denotes the inner product. The normalisation of spot prices \(p_{s1} = 1, s = 1, \ldots, S\), implies \(d \bar{p}_{s1} = 0, s = 1, \ldots, S\). Thus if we define

\[
Q = \left[\frac{\partial \bar{p}_1}{\partial y^j_1} \right] : R^{L_S} \rightarrow R^{(L-1)S}, \quad Q_T : R^{(L-1)S} \rightarrow R^{L_S},
\]

(23)

\[
u = dy^j_1, \quad v = \sum_{i=1}^I \bar{x}_i^j \odot (\bar{x}'_1 - \bar{w}'_1).
\]

Then (22) reduces to

\[
\langle Qu, v \rangle = \langle u, Q_T v \rangle = 0 \quad \forall \, u \in R^{L_S} \Leftrightarrow Q_T v = 0.
\]

(24)

If we show that rank \(Q_T = (L-1)S\) then (24) is satisfied only if \(v = 0\). The key
idea is then to use Proposition 3 to show that generically \(v \neq 0 \) at equilibrium.

Step 2. We show rank \(Q = (L - 1)S \). In view of the separability assumption \(A_{13} \) the equation \(\tilde{Z}(p, \omega) = 0 \) decomposes into a pair of equations

\[
\begin{align*}
\tilde{Z}_d(p_\omega, \omega_\omega) &= 0, \\
\tilde{Z}_s(p_1, \omega_1) &= 0.
\end{align*}
\]

Differentiating the latter at \(\omega = \bar{\omega} \) and using the fact that \(\bar{p}_1(\bar{\omega}) = p_1 \) gives

\[
\frac{\partial \tilde{Z}_s}{\partial \tilde{p}_1} \frac{\partial \tilde{p}_1}{\partial y_{sl}} = -\sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{sl}}{\partial m_i} \bar{p}_s + e_{sl}, \quad s = 1, \ldots, S, \\
\frac{\partial \tilde{Z}_d}{\partial \tilde{p}_1} \frac{\partial \tilde{p}_1}{\partial y_{dl}} = -\sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{dl}}{\partial m_i} \bar{p}_s + e_{dl}.
\]

where \(e_{sl} \in R^{\mathcal{L}S} \) is the vector whose component \((s, l)\) is 1 and whose other components are zero. Since \(\bar{\omega} \) is regular the matrix \(B = [\partial \tilde{Z}_j / \partial \tilde{p}_1] \) has rank \((L - 1)S\), so that \(B^{-1} \) is well-defined. Thus (25) can be written as

\[
Q = B^{-1} C,
\]

where the matrix \(C \) is given by (recall \(\bar{p}_s = 1, s = 1, \ldots, S \))

\[
C = \begin{bmatrix}
-\sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{12}}{\partial m_i} & 1 - \bar{p}_{12} & \sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{12}}{\partial m_i} & \cdots & -\bar{p}_{SL} & \sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{12}}{\partial m_i} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-\sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{SL}}{\partial m_i} & -\bar{p}_{12} & \sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{SL}}{\partial m_i} & \cdots & 1 - \bar{p}_{SL} & \sum_{i=1}^{L} \theta_{ly_i} \frac{\partial \tilde{x}_{SL}}{\partial m_i}
\end{bmatrix}
\]

\(C \) is a matrix with \(\mathcal{L} \) columns (each component \(y_{sl} \) has an effect on price) and \((L - 1)S\) rows (we consider truncated demand). To prove that rank \(Q = (L - 1)S \) it suffices to show that rank \(C = (L - 1)S \). Let \(C_{sl} \) denote column \((s, l)\) of \(C \). If we subtract from each column \(C_{sl}, l \geq 2 \), the multiple \(\bar{p}_s C_{s1} \) of column \(C_{s1}, s = 1, \ldots, S \) then we obtain a new matrix

\[
D = [\ldots, C_{s1}, C_{s2} - \bar{p}_s C_{s1}, \ldots, C_{sl} - \bar{p}_s C_{s1}, \ldots]
\]

with the same rank as \(C \),
\[
D = \begin{bmatrix}
- \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_1}{\partial m_1} & - \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_1}{\partial m_2} & 0 & \cdots & - \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_1}{\partial m_{S}} & 0 \\
- \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_2}{\partial m_1} & 0 & - \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_2}{\partial m_2} & I & \cdots & - \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_2}{\partial m_{S}} & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_S}{\partial m_1} & 0 & - \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_S}{\partial m_2} & 0 & \cdots & - \sum_{i=1}^{l} \frac{\partial \tilde{\chi}_S}{\partial m_{S}} & I
\end{bmatrix},
\]

where \(I \) is an \((L-1) \times (L-1)\) identity matrix. Clearly rank \(D = (L-1)S \).

Step 3. As usual, to prove a property for equilibria, we prove that it holds for all positive \(A \)-equilibria. For \(A \in \mathcal{A} \) define the domain

\[
A_A = \left\{ z = (p, q, y, \omega, \eta) \in \Gamma \times R^l \times R^q \times (\Omega' \cap \Omega^\prime) \mid \text{rank } W(z) = J, \text{ } \partial_A(z) > 0 \right\}.
\]

We add the equation \(v = 0 \), namely

\[
G_A(z) = \sum_{i=1}^{l} \pi_A^i(z) \cdot \left[\tilde{\chi}_1 \left(p_1, \tilde{\pi}_A^i(z) - \tilde{\psi}_A^j(z) \right) \right] = 0
\]

(26)

to the \(A \)-equilibrium equations \(F_A(z) = 0 \). Thus if we define \(H_A: A_A \rightarrow \mathcal{M} \times R^{L-1}S \) by \(H_A(z) = (F_A(z), G_A(z)) \) where \(F_A \) is defined by eqs. (18) and \(G_A \) by (26), we want to prove that generically for each \(A \in \mathcal{A} \) the system of equations \(H_A(z) = 0 \) has no solution in \(A_A \).

By Lemma 1 it will suffice to show that rank \(D, H_A(z) \geq \dim \mathcal{M} + 1 \), for all \(z \in H_A^{-1}(0) \). By earlier arguments rank \(D, F_A(z) = \dim \mathcal{M} \) for all \(z \in F_A^{-1}(0) \). Since \(G_A: A_A \rightarrow R^{L-1}S \), \(G_A \) has components \((s, l), s = 1, \ldots, S, l = 2, \ldots, L \). It suffices to show that for each \(z \in H_A^{-1}(0) \) there exists some state \(s \) and some good \(l \geq 2 \) such that component \((s, l)\) of \(G_A \) can be locally controlled without affecting any other component of \(G_A \) or \(F_A \). By the proof of the Proposition 3 for each \(A \in \mathcal{A} \) and each \(z \in H_A^{-1}(0) \) for any pair of agents \(i \) and \(i' \), \(\pi_A^i(z) \neq \pi_A^{i'}(z) \), provided \((\omega, \eta) \in \Omega' \). Let \(\pi_A = (\pi_A^1, \ldots, \pi_A^S) \). Thus there exists a state \(s \) such that, without loss of generality \(\pi_A^s(z) > \pi_A^{s'}(z) \). Pick some good \(l \geq 2 \). To obtain an increase in component \((s, l)\) of \(G_A \) consider the transfer of good \(l \) from agent \(i \) to agent \(i' \),

\[
dw_{il} = -dw_{il}, \quad dw_{il}' > 0.
\]
At the same time decrease (increase) the endowment of good 1 of agent \(i\) (agent \(i')\) so as to leave his income and hence his demand unchanged,
\(d\omega_{i1}' = -p_{it} d\omega_{i1}' \) (\(d\omega_{i1}' = p_{it} d\omega_{i1}'\)). Component (s, l) of \(G_{A}\) increases by

\[(\pi_{A}(z) - \pi_{A}(z)) \frac{d\omega_{i1}}{d\omega_{i1}} > 0.\]

No other component of \(G_{A}(z)\) is affected and \(F_{A}(z)\) unchanged. Thus rank \(D_{Z}H_{A}(z)\gtrless \dim \mathcal{H} + 1, \forall z \in H_{A}^{-1}(0)\).

By Lemma 1 there exist submanifolds \(M_{a} \subset A_{A}\), \(\dim M_{a} = N(I+J)-1, a = 1, \ldots, m\) such that \(H_{A}^{-1}(0) = \bigcup_{\pi=1}^{m} M_{a}\). Now apply Sard's theorem to the projection onto \(\Omega \cap \Omega'\) as in the proof of Proposition 3 to deduce the existence of an open set of full measure \(\Omega^{*} \subset \Omega \cap \Omega'\) such that for all \(A \in \mathcal{A}\), \(H_{A}(z) = 0\) has no solution for all \((\omega, \eta) \in \Omega^{*}\). Thus no \(A\)-equilibrium and hence no equilibrium is constrained efficient whenever \((\omega, \eta) \in \Omega^{*}\). □

6.5. Proof of Theorem 4

Let \(\mathcal{T} \subset \{1, \ldots, I\}\) denote the subset of firms with ray technology sets and let \(\mathcal{T}^{c}\) denote the remaining firms. Note that for each firm \(j \in \mathcal{T}\) the supply function

\[\tilde{\beta}(p, \beta', \eta_1') = \arg \max_{y_{0}^j \times R^T} \beta_1 \cdot (p_1 \otimes \eta_1') + p_0 y_0^j,\]

(27)

where \(\beta' = \sum_{j=1}^{J} \theta_j^j \pi^j\), now depends in addition on the ray parameter \(\eta_1\). Since for all agents \(i\) such that \((i, j) \notin A\) the no-arbitrage equation

\[q' = \left(\sum_{j=1}^{J} \tilde{\pi}_{A} p_j \eta_1^j\right) h'(y_0^j) + p_0 y_0^j\]

(28)

holds, it follows that \(\sum_{j=1}^{J} \tilde{\pi}_{A} p_j \eta_1^j\) is independent of \(i\).

As in the proof of Theorem 3 we show that equations of equilibrium and the production efficiency condition (ii) of Proposition 4 are generically not compatible when \(\mathcal{T} \neq \emptyset\). For a firm \(j \in \mathcal{T}\) with ray technology, condition (ii) takes the form

\[\left[\frac{\partial \tilde{p}_j}{\partial y_{i1}'} \eta_1, \sum_{i=1}^{I} \tilde{\pi}_{A} \otimes (\tilde{x}_1' - \tilde{w}_1')\right] = 0 \quad \forall x \in R.\]

Using the notation in (23) this can be written as
\[\eta_1^T Q^T v = 0 \iff v^T Q \eta_1 = 0. \]

As usual we show that this condition is not satisfied at positive \(A \)-equilibria. Applying Step 3 in the proof of Theorem 3 we obtain a set \(\Omega^* \subset \mathbb{R}^{N_j \times s}_+ \) on which \(v_A(z) \neq 0 \) where

\[v_A(z) = \sum_{i=1}^I \pi_{A1}(z) \circ \left[\hat{x}_i(p, \pi_1 \circ \psi_{A1}(z)) - \psi_{A1}(z) \right]. \]

Let

\[A_A = \left\{ z = (p, q, y, \omega, \eta) \in \Gamma \times R^J \times R^{N_j} \times \Omega^* \mid \begin{array}{c} \text{rank} W(z) = J \\ \theta_A(z) > 0 \end{array} \right\}. \]

The function \(F_A \) in (18) remains unchanged except that \(\sum_{j=1}^J \eta_1^j \) in (i) is replaced by \(\sum_{j \in J} \eta_1^j \) and the components in (ii) are replaced by \(\tilde{g}^j(p, \tilde{\pi}_A(z), \eta_1^j) - y^j \) for \(j \in J \). Let \(G_A : A_A \rightarrow R \) be defined by

\[G_A(z) = \eta_1^T Q(z)^T v_A(z) = 0, \]

and let \(H_{z,j} : A_A \rightarrow \mathcal{M} \times R \) be given by \(H_A(z) = (F_A(z), G_A(z)) \). We show that generically \(H_A(z) = 0 \) has no solution for each \(A \in \mathcal{A} \). The fact that \(H_A \cap 0 \) will be established if we can show that \(G_A \) can be perturbed without affecting the equations \(F_A(z) = 0 \). Consider a perturbation \(d\eta_1^j \in \mathbb{R}^{L_j} \) satisfying

\[\tilde{p}_1 \circ d\eta_1^j = 0, \quad d\eta_1^T Q^T v_A \neq 0. \]

If such a change \(d\eta_1^j \) exists then the objective function of firm \(j \) in eq. (27) and the no-arbitrage equation (28) are unchanged. Thus the input decision \(\tilde{y}_0^j \) is unchanged and \(dy_1^j = d\eta_1^j h(y_0^j) \) restores equality in (18) (ii), while \(dw_1^j = -\hat{y}_1^j dy_1^j \) compensates for the change in return on firm \(j \)'s equity. Thus \(G_A \) is perturbed without affecting the equations \(F_A(z) = 0 \). Note also that this sequence of changes leaves \(Q(z) \) and \(v_A(z) \) unaffected.

Equation (29) has a solution if and only if there does not exist \(a_1 \in \mathbb{R}^s, a_1 \neq 0 \) such that \(Q^T v_A = a_1 \circ \tilde{p}_1 \). Thus it suffices to show that \(a_1 \circ \tilde{p}_1 \notin \text{Im} Q^T \) for \(a_1 \neq 0 \). Since \(Q = B^{-1} C \) and \(B \) is non-singular, \(\text{Im} Q^T = \text{Im} C^T \) and \(\text{Im} C^T = (\ker C)^\perp \). Note that the vectors of income effects

\[\tau_s = \sum_{i=1}^I \bar{\theta}_s \frac{\partial \tilde{x}_1^j}{\partial m_s}, \quad s = 1, \ldots, S, \]
satisfy $C\tau = 0$ so that $\tau^s \in \ker C$, $s = 1, \ldots, S$. Since $\tau^s \cdot (a_i \div \tilde{p}_i) = a_s$, $s = 1, \ldots, S$, $a_i \div \tilde{p}_i \notin \text{Im} Q'^T$ for $a_i \neq 0$. Thus $H_A \cap 0$. The existence of an open set of full measure $\Omega \subset R_0^{(J+J)}$ is then obtained by applying Sard's theorem in the standard way to the natural projection of $H_A^1(0)$ onto Ω. The reader can check that if all firms have ray technology sets the assumption $I + J \leq S + 1$ is not needed to establish Step 2 in the proof of Theorem 2. Since the objective functions of the firms do not depend on the portfolios (θ^s), equilibria can be defined without these variables.

Appendix

Definition 9. $\omega \in R^{N}$ is a regular endowment for the spot market economy $\mathcal{E}((u'), \omega)$ if, for all equilibria of this economy (Definition 7) the matrix of derivatives of the excess demand function with respect to prices is of rank $(L - 1)(S + 1)$.

Proposition 5. If the assumptions $(A_{(4)}- (3), B_{(3)}- (2))$ and $I + J \leq S + 1$ are satisfied then there exists an open set of full measure $\Omega \subset R_0^{(J+J)}$ such that, for every economy $\mathcal{E}((u), (Y), (\omega, \eta))$ with $(\omega, \eta) \in \Omega$, in each equilibrium $(x, \theta, \tilde{y}, (\tilde{p}, \tilde{q}, \tilde{p}))$, the induced endowment $\tilde{\omega} = (\tilde{w})$, $\tilde{w}' = w' + (\tilde{y} + \eta)\theta'$, is regular for the spot market economy $\mathcal{E}((u'), \tilde{\omega})$.

Proof. From the separability assumption $A_{(3p)}$, a spot market economy $\mathcal{E}((u'), \omega)$ can be decomposed into independent date 0 and date 1 economies. Consider the excess demand function

$$Z(p, \omega) = \sum_i (x'(p, p \div w') - w')$$

ω is regular for $\mathcal{E}((u'), \omega)$ if and only if $(\partial Z_0/\partial \tilde{p}_0)(p_0, \omega_0)$ has rank $(L - 1)$ and $(\partial Z_1/\partial \tilde{p}_1)(p_1, \omega_1)$ has rank $(L - 1)$. As usual we will prove that this property holds generically for all positive A-equilibria.

Let A_A be as in the proof of Proposition 3. Consider the systems of equations $H_A^0(z) = 0$ and $H_A^1(z) = 0$ where $H_A^i: A_A \rightarrow \mathcal{M} \times R, i = 0, 1$ is defined by $H_A^i(z) = (F_A(z), G_A^i(z)), i = 0, 1, F_A$ is defined by (18) and

$$G_A^0(z) = \text{det} \frac{\partial Z_0}{\partial \tilde{p}_0}(p_0, \omega_0),$$

$$G_A^1(z) = \text{det} \frac{\partial Z_1}{\partial \tilde{p}_1}(p_1, \omega_1),$$

with $\tilde{w}'_A = w' + (\tilde{y} + \eta)\theta'_A, \omega_A = (\psi'_A)_{i-1}$.

An argument, by now familiar proves that a set Ω^* with the properties described in Proposition 5 exists if $H^*_A \not\supset 0$, $i=0, 1$. To show this it suffices to prove that we can perturb $G^*_A, i=0, 1$ without affecting the equations $F_A(z) = 0$.

A little vector calculus shows that the Slutsky equation still holds with multiple budget constraints so that

$$\frac{\partial Z_0}{\partial p_0}(p_0, \Omega_{A0}) = \left[\sum_{i=1}^I \left(\frac{\partial \tilde{x}_{il}}{\partial p_{ok}} \right) \right]$$

$$= \left[\sum_{i=1}^I \left(\frac{\partial \tilde{x}_{il}}{\partial p_{ok}} \right)^{w_i = \text{const}} - \sum_{i=1}^I \left(x'_{ik} - w'_{Aik} \frac{\partial \tilde{x}_{il}}{\partial m_{is}} \right) \right], \quad l = 2, \ldots, L, \quad k = 2, \ldots, L,$n

$$\frac{\partial Z_1}{\partial p_1}(p_1, \Omega_{A1}) = \left[\sum_{i=1}^I \left(\frac{\partial \tilde{x}_{il}}{\partial p_{ok}} \right) \right]$$

$$= \left[\sum_{i=1}^I \left(\frac{\partial \tilde{x}_{il}}{\partial p_{ok}} \right)^{w_i = \text{const}} - \sum_{i=1}^I \left(x'_{ik} - w'_{Aik} \frac{\partial \tilde{x}_{il}}{\partial m_{is}} \right) \right], \quad l, k = 2, \ldots, L, \quad s, s = 1, \ldots, S.$n

Any transfer of goods among the agents which does not affect their incomes leaves the equations of equilibrium $F_A(z) = 0$ unchanged but affects the terms $(x'_{ik} - w'_{Aik})$. Let $z' = (x' - w'_{A})$. Such transfers can generate any dz, such that $\sum_{i=1}^I dz_i = 0$. Since the matrix of substitutions terms is negative definite, the result is implied by the following lemma.

Lemma 2. Let $(a_k), k = 1, \ldots, n, (b^i_k), i = 1, \ldots, I, k = 1, \ldots, n$ be $(I+1)n$ vectors of \mathbb{R}^n such that $\det (a_1, \ldots, a_n) \neq 0$. Let

$$E = \left\{ z \in \mathbb{R}^n \mid \sum_{i=1}^I z_i = 0 \forall k = 1, \ldots, n \right\}$$

and let $P: E \rightarrow \mathbb{R}$ be defined by

$$P(z) = \det (u_1(z), \ldots, u_n(z)) \quad \text{where} \quad u_k(z) = a_k + \sum_{i=1}^I z_i b_k.$$

If $P(\bar{z}) = 0$ for some $\bar{z} \in E$, then there exists $h \in E$ such that $D_p P(\bar{z}) \cdot h \neq 0$.

Proof. By linearity of the determinant with respect to each variable,

$$P(z) = \det (a_1, u_2(z), \ldots, u_n(z)) + \sum_{i=1}^I z_i \det (b_1, u_2(z), \ldots, u_n(z)).$$
Consider the set of vectors \(h \in E \) such that \(h_k = 0, \; k = 2, \ldots, n \). Either for some of these vectors

\[
D_z P(\tilde{z}) \cdot h = \sum_{i=1}^{l} h'_i \det(h'_1, u_2(\tilde{z}_2), \ldots, u_n(\tilde{z}_n)) \neq 0
\]

or \(\det(h'_1, u_2(\tilde{z}_2), \ldots, u_n(\tilde{z}_n)) \) is independent of \(i \) and \(P(\tilde{z}) = \det(a_1, u_2(\tilde{z}_2), \ldots, u_n(\tilde{z}_n)) \). In this case we repeat the reasoning for the following index. Taking successively all indices, either we find a vector \(h \) such that \(D_z P(\tilde{z})h \neq 0 \) or \(P(\tilde{z}) = \det(a_1, \ldots, a_n) \). But by assumption \(P(\tilde{z}) = 0 \) and \(\det(a_1, \ldots, a_n) \neq 0 \); thus the first alternative must hold and the proof is complete. \(\Box \)

References

Magill, M.J.P. and W Shafer, 1990, Characterisation of generically complete real asset structures, Journal of Mathematical Economics 19, this issue

